Questions?
See the FAQ
or other info.

Polytope of Type {5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10}*120a
Also Known As : {5,10}3if this polytope has another name.
Group : SmallGroup(120,35)
Rank : 3
Schlafli Type : {5,10}
Number of vertices, edges, etc : 6, 30, 12
Order of s0s1s2 : 3
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {5,10,2} of size 240
Vertex Figure Of :
   {2,5,10} of size 240
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,5}*60
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,10}*240, {10,10}*240c, {10,10}*240d
   3-fold covers : {15,10}*360
   4-fold covers : {20,10}*480a, {20,10}*480b, {5,20}*480, {10,10}*480
   5-fold covers : {5,10}*600
   6-fold covers : {10,30}*720b, {15,10}*720, {30,10}*720a, {30,10}*720b
   7-fold covers : {35,10}*840
   8-fold covers : {40,10}*960a, {40,10}*960b, {10,20}*960a, {20,10}*960a, {10,20}*960b, {20,10}*960b, {10,10}*960
   9-fold covers : {45,10}*1080
   10-fold covers : {5,10}*1200a, {5,10}*1200b, {10,10}*1200b, {10,10}*1200c, {10,10}*1200d
   11-fold covers : {55,10}*1320
   12-fold covers : {60,10}*1440a, {60,10}*1440b, {15,20}*1440a, {15,20}*1440b, {10,30}*1440, {30,10}*1440
   13-fold covers : {65,10}*1560
   14-fold covers : {10,70}*1680b, {35,10}*1680, {70,10}*1680a, {70,10}*1680b
   15-fold covers : {15,10}*1800b
   16-fold covers : {80,10}*1920a, {80,10}*1920b, {20,20}*1920a, {10,40}*1920a, {40,10}*1920a, {10,20}*1920, {20,10}*1920, {20,20}*1920b, {20,20}*1920c, {20,20}*1920d, {10,40}*1920b, {40,10}*1920b, {5,10}*1920b
Permutation Representation (GAP) :
s0 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s1 := ( 3, 5)( 4,11)( 6,12)( 7, 9);;
s2 := ( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s1 := Sym(12)!( 3, 5)( 4,11)( 6,12)( 7, 9);
s2 := Sym(12)!( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);
poly := sub<Sym(12)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope