Questions?
See the FAQ
or other info.

Polytope of Type {3,2,10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,10,10}*1200c
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 5
Schlafli Type : {3,2,10,10}
Number of vertices, edges, etc : 3, 3, 10, 50, 10
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,5,10}*600
   5-fold quotients : {3,2,10,2}*240
   10-fold quotients : {3,2,5,2}*120
   25-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (  4, 54)(  5, 58)(  6, 57)(  7, 56)(  8, 55)(  9, 74)( 10, 78)( 11, 77)
( 12, 76)( 13, 75)( 14, 69)( 15, 73)( 16, 72)( 17, 71)( 18, 70)( 19, 64)
( 20, 68)( 21, 67)( 22, 66)( 23, 65)( 24, 59)( 25, 63)( 26, 62)( 27, 61)
( 28, 60)( 29, 79)( 30, 83)( 31, 82)( 32, 81)( 33, 80)( 34, 99)( 35,103)
( 36,102)( 37,101)( 38,100)( 39, 94)( 40, 98)( 41, 97)( 42, 96)( 43, 95)
( 44, 89)( 45, 93)( 46, 92)( 47, 91)( 48, 90)( 49, 84)( 50, 88)( 51, 87)
( 52, 86)( 53, 85);;
s3 := (  4, 85)(  5, 84)(  6, 88)(  7, 87)(  8, 86)(  9, 80)( 10, 79)( 11, 83)
( 12, 82)( 13, 81)( 14,100)( 15, 99)( 16,103)( 17,102)( 18,101)( 19, 95)
( 20, 94)( 21, 98)( 22, 97)( 23, 96)( 24, 90)( 25, 89)( 26, 93)( 27, 92)
( 28, 91)( 29, 60)( 30, 59)( 31, 63)( 32, 62)( 33, 61)( 34, 55)( 35, 54)
( 36, 58)( 37, 57)( 38, 56)( 39, 75)( 40, 74)( 41, 78)( 42, 77)( 43, 76)
( 44, 70)( 45, 69)( 46, 73)( 47, 72)( 48, 71)( 49, 65)( 50, 64)( 51, 68)
( 52, 67)( 53, 66);;
s4 := (  5,  8)(  6,  7)( 10, 13)( 11, 12)( 15, 18)( 16, 17)( 20, 23)( 21, 22)
( 25, 28)( 26, 27)( 30, 33)( 31, 32)( 35, 38)( 36, 37)( 40, 43)( 41, 42)
( 45, 48)( 46, 47)( 50, 53)( 51, 52)( 55, 58)( 56, 57)( 60, 63)( 61, 62)
( 65, 68)( 66, 67)( 70, 73)( 71, 72)( 75, 78)( 76, 77)( 80, 83)( 81, 82)
( 85, 88)( 86, 87)( 90, 93)( 91, 92)( 95, 98)( 96, 97)(100,103)(101,102);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(103)!(2,3);
s1 := Sym(103)!(1,2);
s2 := Sym(103)!(  4, 54)(  5, 58)(  6, 57)(  7, 56)(  8, 55)(  9, 74)( 10, 78)
( 11, 77)( 12, 76)( 13, 75)( 14, 69)( 15, 73)( 16, 72)( 17, 71)( 18, 70)
( 19, 64)( 20, 68)( 21, 67)( 22, 66)( 23, 65)( 24, 59)( 25, 63)( 26, 62)
( 27, 61)( 28, 60)( 29, 79)( 30, 83)( 31, 82)( 32, 81)( 33, 80)( 34, 99)
( 35,103)( 36,102)( 37,101)( 38,100)( 39, 94)( 40, 98)( 41, 97)( 42, 96)
( 43, 95)( 44, 89)( 45, 93)( 46, 92)( 47, 91)( 48, 90)( 49, 84)( 50, 88)
( 51, 87)( 52, 86)( 53, 85);
s3 := Sym(103)!(  4, 85)(  5, 84)(  6, 88)(  7, 87)(  8, 86)(  9, 80)( 10, 79)
( 11, 83)( 12, 82)( 13, 81)( 14,100)( 15, 99)( 16,103)( 17,102)( 18,101)
( 19, 95)( 20, 94)( 21, 98)( 22, 97)( 23, 96)( 24, 90)( 25, 89)( 26, 93)
( 27, 92)( 28, 91)( 29, 60)( 30, 59)( 31, 63)( 32, 62)( 33, 61)( 34, 55)
( 35, 54)( 36, 58)( 37, 57)( 38, 56)( 39, 75)( 40, 74)( 41, 78)( 42, 77)
( 43, 76)( 44, 70)( 45, 69)( 46, 73)( 47, 72)( 48, 71)( 49, 65)( 50, 64)
( 51, 68)( 52, 67)( 53, 66);
s4 := Sym(103)!(  5,  8)(  6,  7)( 10, 13)( 11, 12)( 15, 18)( 16, 17)( 20, 23)
( 21, 22)( 25, 28)( 26, 27)( 30, 33)( 31, 32)( 35, 38)( 36, 37)( 40, 43)
( 41, 42)( 45, 48)( 46, 47)( 50, 53)( 51, 52)( 55, 58)( 56, 57)( 60, 63)
( 61, 62)( 65, 68)( 66, 67)( 70, 73)( 71, 72)( 75, 78)( 76, 77)( 80, 83)
( 81, 82)( 85, 88)( 86, 87)( 90, 93)( 91, 92)( 95, 98)( 96, 97)(100,103)
(101,102);
poly := sub<Sym(103)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope