Questions?
See the FAQ
or other info.

# Polytope of Type {6,2,10,5}

Atlas Canonical Name : {6,2,10,5}*1200
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 5
Schlafli Type : {6,2,10,5}
Number of vertices, edges, etc : 6, 6, 10, 25, 5
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,10,5}*600
3-fold quotients : {2,2,10,5}*400
5-fold quotients : {6,2,2,5}*240
10-fold quotients : {3,2,2,5}*120
15-fold quotients : {2,2,2,5}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := (10,11)(13,14)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);;
s3 := ( 7,10)( 8,16)( 9,13)(11,18)(12,24)(14,26)(15,20)(17,22)(21,30)(23,27)
(25,28)(29,31);;
s4 := ( 7, 8)( 9,12)(10,14)(11,13)(16,21)(17,20)(18,23)(19,22)(24,25)(26,29)
(27,28)(30,31);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(31)!(3,4)(5,6);
s1 := Sym(31)!(1,5)(2,3)(4,6);
s2 := Sym(31)!(10,11)(13,14)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31);
s3 := Sym(31)!( 7,10)( 8,16)( 9,13)(11,18)(12,24)(14,26)(15,20)(17,22)(21,30)
(23,27)(25,28)(29,31);
s4 := Sym(31)!( 7, 8)( 9,12)(10,14)(11,13)(16,21)(17,20)(18,23)(19,22)(24,25)
(26,29)(27,28)(30,31);
poly := sub<Sym(31)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope