Questions?
See the FAQ
or other info.

# Polytope of Type {6,10,2,5}

Atlas Canonical Name : {6,10,2,5}*1200
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 5
Schlafli Type : {6,10,2,5}
Number of vertices, edges, etc : 6, 30, 10, 5, 5
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,10,2,5}*400
5-fold quotients : {6,2,2,5}*240
6-fold quotients : {2,5,2,5}*200
10-fold quotients : {3,2,2,5}*120
15-fold quotients : {2,2,2,5}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 3, 4)( 7, 8)(11,13)(12,14)(17,19)(18,20)(23,25)(24,26)(27,29)(28,30);;
s1 := ( 1, 3)( 2, 7)( 5,12)( 6,11)( 9,18)(10,17)(13,14)(15,24)(16,23)(19,20)
(21,28)(22,27)(25,26)(29,30);;
s2 := ( 1, 9)( 2, 5)( 3,17)( 4,19)( 6,21)( 7,11)( 8,13)(10,15)(12,27)(14,29)
(16,22)(18,23)(20,25)(24,28)(26,30);;
s3 := (32,33)(34,35);;
s4 := (31,32)(33,34);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(35)!( 3, 4)( 7, 8)(11,13)(12,14)(17,19)(18,20)(23,25)(24,26)(27,29)
(28,30);
s1 := Sym(35)!( 1, 3)( 2, 7)( 5,12)( 6,11)( 9,18)(10,17)(13,14)(15,24)(16,23)
(19,20)(21,28)(22,27)(25,26)(29,30);
s2 := Sym(35)!( 1, 9)( 2, 5)( 3,17)( 4,19)( 6,21)( 7,11)( 8,13)(10,15)(12,27)
(14,29)(16,22)(18,23)(20,25)(24,28)(26,30);
s3 := Sym(35)!(32,33)(34,35);
s4 := Sym(35)!(31,32)(33,34);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope