Questions?
See the FAQ
or other info.

Polytope of Type {50,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {50,6,2}*1200
if this polytope has a name.
Group : SmallGroup(1200,203)
Rank : 4
Schlafli Type : {50,6,2}
Number of vertices, edges, etc : 50, 150, 6, 2
Order of s0s1s2s3 : 150
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {50,2,2}*400
   5-fold quotients : {10,6,2}*240
   6-fold quotients : {25,2,2}*200
   15-fold quotients : {10,2,2}*80
   25-fold quotients : {2,6,2}*48
   30-fold quotients : {5,2,2}*40
   50-fold quotients : {2,3,2}*24
   75-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 25)(  7, 24)(  8, 23)(  9, 22)( 10, 21)( 11, 20)
( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 27, 30)( 28, 29)( 31, 50)( 32, 49)
( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)
( 52, 55)( 53, 54)( 56, 75)( 57, 74)( 58, 73)( 59, 72)( 60, 71)( 61, 70)
( 62, 69)( 63, 68)( 64, 67)( 65, 66)( 77, 80)( 78, 79)( 81,100)( 82, 99)
( 83, 98)( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)
(102,105)(103,104)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)
(112,119)(113,118)(114,117)(115,116)(127,130)(128,129)(131,150)(132,149)
(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141);;
s1 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 25)( 12, 24)( 13, 23)
( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 26, 56)( 27, 60)( 28, 59)( 29, 58)
( 30, 57)( 31, 51)( 32, 55)( 33, 54)( 34, 53)( 35, 52)( 36, 75)( 37, 74)
( 38, 73)( 39, 72)( 40, 71)( 41, 70)( 42, 69)( 43, 68)( 44, 67)( 45, 66)
( 46, 65)( 47, 64)( 48, 63)( 49, 62)( 50, 61)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 86,100)( 87, 99)( 88, 98)( 89, 97)( 90, 96)( 91, 95)
( 92, 94)(101,131)(102,135)(103,134)(104,133)(105,132)(106,126)(107,130)
(108,129)(109,128)(110,127)(111,150)(112,149)(113,148)(114,147)(115,146)
(116,145)(117,144)(118,143)(119,142)(120,141)(121,140)(122,139)(123,138)
(124,137)(125,136);;
s2 := (  1,101)(  2,102)(  3,103)(  4,104)(  5,105)(  6,106)(  7,107)(  8,108)
(  9,109)( 10,110)( 11,111)( 12,112)( 13,113)( 14,114)( 15,115)( 16,116)
( 17,117)( 18,118)( 19,119)( 20,120)( 21,121)( 22,122)( 23,123)( 24,124)
( 25,125)( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)( 32, 82)
( 33, 83)( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)( 40, 90)
( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)( 48, 98)
( 49, 99)( 50,100)( 51,126)( 52,127)( 53,128)( 54,129)( 55,130)( 56,131)
( 57,132)( 58,133)( 59,134)( 60,135)( 61,136)( 62,137)( 63,138)( 64,139)
( 65,140)( 66,141)( 67,142)( 68,143)( 69,144)( 70,145)( 71,146)( 72,147)
( 73,148)( 74,149)( 75,150);;
s3 := (151,152);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(152)!(  2,  5)(  3,  4)(  6, 25)(  7, 24)(  8, 23)(  9, 22)( 10, 21)
( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 27, 30)( 28, 29)( 31, 50)
( 32, 49)( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)
( 40, 41)( 52, 55)( 53, 54)( 56, 75)( 57, 74)( 58, 73)( 59, 72)( 60, 71)
( 61, 70)( 62, 69)( 63, 68)( 64, 67)( 65, 66)( 77, 80)( 78, 79)( 81,100)
( 82, 99)( 83, 98)( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)
( 90, 91)(102,105)(103,104)(106,125)(107,124)(108,123)(109,122)(110,121)
(111,120)(112,119)(113,118)(114,117)(115,116)(127,130)(128,129)(131,150)
(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)
(140,141);
s1 := Sym(152)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 25)( 12, 24)
( 13, 23)( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 26, 56)( 27, 60)( 28, 59)
( 29, 58)( 30, 57)( 31, 51)( 32, 55)( 33, 54)( 34, 53)( 35, 52)( 36, 75)
( 37, 74)( 38, 73)( 39, 72)( 40, 71)( 41, 70)( 42, 69)( 43, 68)( 44, 67)
( 45, 66)( 46, 65)( 47, 64)( 48, 63)( 49, 62)( 50, 61)( 76, 81)( 77, 85)
( 78, 84)( 79, 83)( 80, 82)( 86,100)( 87, 99)( 88, 98)( 89, 97)( 90, 96)
( 91, 95)( 92, 94)(101,131)(102,135)(103,134)(104,133)(105,132)(106,126)
(107,130)(108,129)(109,128)(110,127)(111,150)(112,149)(113,148)(114,147)
(115,146)(116,145)(117,144)(118,143)(119,142)(120,141)(121,140)(122,139)
(123,138)(124,137)(125,136);
s2 := Sym(152)!(  1,101)(  2,102)(  3,103)(  4,104)(  5,105)(  6,106)(  7,107)
(  8,108)(  9,109)( 10,110)( 11,111)( 12,112)( 13,113)( 14,114)( 15,115)
( 16,116)( 17,117)( 18,118)( 19,119)( 20,120)( 21,121)( 22,122)( 23,123)
( 24,124)( 25,125)( 26, 76)( 27, 77)( 28, 78)( 29, 79)( 30, 80)( 31, 81)
( 32, 82)( 33, 83)( 34, 84)( 35, 85)( 36, 86)( 37, 87)( 38, 88)( 39, 89)
( 40, 90)( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 96)( 47, 97)
( 48, 98)( 49, 99)( 50,100)( 51,126)( 52,127)( 53,128)( 54,129)( 55,130)
( 56,131)( 57,132)( 58,133)( 59,134)( 60,135)( 61,136)( 62,137)( 63,138)
( 64,139)( 65,140)( 66,141)( 67,142)( 68,143)( 69,144)( 70,145)( 71,146)
( 72,147)( 73,148)( 74,149)( 75,150);
s3 := Sym(152)!(151,152);
poly := sub<Sym(152)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope