Questions?
See the FAQ
or other info.

Polytope of Type {5,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,6}*1200b
if this polytope has a name.
Group : SmallGroup(1200,944)
Rank : 3
Schlafli Type : {5,6}
Number of vertices, edges, etc : 100, 300, 120
Order of s0s1s2 : 10
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,6}*600
5-fold quotients : {5,6}*240b
10-fold quotients : {5,3}*120, {5,6}*120b, {5,6}*120c
20-fold quotients : {5,3}*60
60-fold quotients : {5,2}*20
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 4)( 3, 5)( 7, 8)( 9,10);;
s1 := (1,2)(3,4)(6,7)(8,9);;
s2 := ( 7,10)( 8, 9)(11,12);;
poly := Group([s0,s1,s2]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(12)!( 2, 4)( 3, 5)( 7, 8)( 9,10);
s1 := Sym(12)!(1,2)(3,4)(6,7)(8,9);
s2 := Sym(12)!( 7,10)( 8, 9)(11,12);
poly := sub<Sym(12)|s0,s1,s2>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1 >;

References : None.
to this polytope