Questions?
See the FAQ
or other info.

Polytope of Type {6,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,10,2}*1200b
if this polytope has a name.
Group : SmallGroup(1200,980)
Rank : 4
Schlafli Type : {6,10,2}
Number of vertices, edges, etc : 30, 150, 50, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,10,2}*600
   25-fold quotients : {6,2,2}*48
   50-fold quotients : {3,2,2}*24
   75-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3, 13)(  4, 19)(  5, 25)(  6, 21)(  9, 14)( 10, 20)( 11, 16)
( 12, 22)( 18, 23)( 26, 51)( 27, 57)( 28, 63)( 29, 69)( 30, 75)( 31, 71)
( 32, 52)( 33, 58)( 34, 64)( 35, 70)( 36, 66)( 37, 72)( 38, 53)( 39, 59)
( 40, 65)( 41, 61)( 42, 67)( 43, 73)( 44, 54)( 45, 60)( 46, 56)( 47, 62)
( 48, 68)( 49, 74)( 50, 55)( 77, 82)( 78, 88)( 79, 94)( 80,100)( 81, 96)
( 84, 89)( 85, 95)( 86, 91)( 87, 97)( 93, 98)(101,126)(102,132)(103,138)
(104,144)(105,150)(106,146)(107,127)(108,133)(109,139)(110,145)(111,141)
(112,147)(113,128)(114,134)(115,140)(116,136)(117,142)(118,148)(119,129)
(120,135)(121,131)(122,137)(123,143)(124,149)(125,130);;
s1 := (  1,101)(  2,124)(  3,117)(  4,115)(  5,108)(  6,114)(  7,107)(  8,105)
(  9,123)( 10,116)( 11,122)( 12,120)( 13,113)( 14,106)( 15,104)( 16,110)
( 17,103)( 18,121)( 19,119)( 20,112)( 21,118)( 22,111)( 23,109)( 24,102)
( 25,125)( 26, 76)( 27, 99)( 28, 92)( 29, 90)( 30, 83)( 31, 89)( 32, 82)
( 33, 80)( 34, 98)( 35, 91)( 36, 97)( 37, 95)( 38, 88)( 39, 81)( 40, 79)
( 41, 85)( 42, 78)( 43, 96)( 44, 94)( 45, 87)( 46, 93)( 47, 86)( 48, 84)
( 49, 77)( 50,100)( 51,126)( 52,149)( 53,142)( 54,140)( 55,133)( 56,139)
( 57,132)( 58,130)( 59,148)( 60,141)( 61,147)( 62,145)( 63,138)( 64,131)
( 65,129)( 66,135)( 67,128)( 68,146)( 69,144)( 70,137)( 71,143)( 72,136)
( 73,134)( 74,127)( 75,150);;
s2 := (  1,  8)(  2,  7)(  3,  6)(  4, 10)(  5,  9)( 11, 23)( 12, 22)( 13, 21)
( 14, 25)( 15, 24)( 16, 18)( 19, 20)( 26, 33)( 27, 32)( 28, 31)( 29, 35)
( 30, 34)( 36, 48)( 37, 47)( 38, 46)( 39, 50)( 40, 49)( 41, 43)( 44, 45)
( 51, 58)( 52, 57)( 53, 56)( 54, 60)( 55, 59)( 61, 73)( 62, 72)( 63, 71)
( 64, 75)( 65, 74)( 66, 68)( 69, 70)( 76, 83)( 77, 82)( 78, 81)( 79, 85)
( 80, 84)( 86, 98)( 87, 97)( 88, 96)( 89,100)( 90, 99)( 91, 93)( 94, 95)
(101,108)(102,107)(103,106)(104,110)(105,109)(111,123)(112,122)(113,121)
(114,125)(115,124)(116,118)(119,120)(126,133)(127,132)(128,131)(129,135)
(130,134)(136,148)(137,147)(138,146)(139,150)(140,149)(141,143)(144,145);;
s3 := (151,152);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(152)!(  2,  7)(  3, 13)(  4, 19)(  5, 25)(  6, 21)(  9, 14)( 10, 20)
( 11, 16)( 12, 22)( 18, 23)( 26, 51)( 27, 57)( 28, 63)( 29, 69)( 30, 75)
( 31, 71)( 32, 52)( 33, 58)( 34, 64)( 35, 70)( 36, 66)( 37, 72)( 38, 53)
( 39, 59)( 40, 65)( 41, 61)( 42, 67)( 43, 73)( 44, 54)( 45, 60)( 46, 56)
( 47, 62)( 48, 68)( 49, 74)( 50, 55)( 77, 82)( 78, 88)( 79, 94)( 80,100)
( 81, 96)( 84, 89)( 85, 95)( 86, 91)( 87, 97)( 93, 98)(101,126)(102,132)
(103,138)(104,144)(105,150)(106,146)(107,127)(108,133)(109,139)(110,145)
(111,141)(112,147)(113,128)(114,134)(115,140)(116,136)(117,142)(118,148)
(119,129)(120,135)(121,131)(122,137)(123,143)(124,149)(125,130);
s1 := Sym(152)!(  1,101)(  2,124)(  3,117)(  4,115)(  5,108)(  6,114)(  7,107)
(  8,105)(  9,123)( 10,116)( 11,122)( 12,120)( 13,113)( 14,106)( 15,104)
( 16,110)( 17,103)( 18,121)( 19,119)( 20,112)( 21,118)( 22,111)( 23,109)
( 24,102)( 25,125)( 26, 76)( 27, 99)( 28, 92)( 29, 90)( 30, 83)( 31, 89)
( 32, 82)( 33, 80)( 34, 98)( 35, 91)( 36, 97)( 37, 95)( 38, 88)( 39, 81)
( 40, 79)( 41, 85)( 42, 78)( 43, 96)( 44, 94)( 45, 87)( 46, 93)( 47, 86)
( 48, 84)( 49, 77)( 50,100)( 51,126)( 52,149)( 53,142)( 54,140)( 55,133)
( 56,139)( 57,132)( 58,130)( 59,148)( 60,141)( 61,147)( 62,145)( 63,138)
( 64,131)( 65,129)( 66,135)( 67,128)( 68,146)( 69,144)( 70,137)( 71,143)
( 72,136)( 73,134)( 74,127)( 75,150);
s2 := Sym(152)!(  1,  8)(  2,  7)(  3,  6)(  4, 10)(  5,  9)( 11, 23)( 12, 22)
( 13, 21)( 14, 25)( 15, 24)( 16, 18)( 19, 20)( 26, 33)( 27, 32)( 28, 31)
( 29, 35)( 30, 34)( 36, 48)( 37, 47)( 38, 46)( 39, 50)( 40, 49)( 41, 43)
( 44, 45)( 51, 58)( 52, 57)( 53, 56)( 54, 60)( 55, 59)( 61, 73)( 62, 72)
( 63, 71)( 64, 75)( 65, 74)( 66, 68)( 69, 70)( 76, 83)( 77, 82)( 78, 81)
( 79, 85)( 80, 84)( 86, 98)( 87, 97)( 88, 96)( 89,100)( 90, 99)( 91, 93)
( 94, 95)(101,108)(102,107)(103,106)(104,110)(105,109)(111,123)(112,122)
(113,121)(114,125)(115,124)(116,118)(119,120)(126,133)(127,132)(128,131)
(129,135)(130,134)(136,148)(137,147)(138,146)(139,150)(140,149)(141,143)
(144,145);
s3 := Sym(152)!(151,152);
poly := sub<Sym(152)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope