Questions?
See the FAQ
or other info.

Polytope of Type {2,38,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,38,4,2}*1216
if this polytope has a name.
Group : SmallGroup(1216,1369)
Rank : 5
Schlafli Type : {2,38,4,2}
Number of vertices, edges, etc : 2, 38, 76, 4, 2
Order of s0s1s2s3s4 : 76
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,38,2,2}*608
   4-fold quotients : {2,19,2,2}*304
   19-fold quotients : {2,2,4,2}*64
   38-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)(23,40)
(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)(42,59)(43,58)(44,57)
(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,78)(62,77)(63,76)(64,75)(65,74)
(66,73)(67,72)(68,71)(69,70);;
s2 := ( 3, 4)( 5,21)( 6,20)( 7,19)( 8,18)( 9,17)(10,16)(11,15)(12,14)(22,23)
(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,61)(42,60)(43,78)
(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)
(55,66)(56,65)(57,64)(58,63)(59,62);;
s3 := ( 3,41)( 4,42)( 5,43)( 6,44)( 7,45)( 8,46)( 9,47)(10,48)(11,49)(12,50)
(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)
(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)
(35,73)(36,74)(37,75)(38,76)(39,77)(40,78);;
s4 := (79,80);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!(1,2);
s1 := Sym(80)!( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)
(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)(42,59)(43,58)
(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,78)(62,77)(63,76)(64,75)
(65,74)(66,73)(67,72)(68,71)(69,70);
s2 := Sym(80)!( 3, 4)( 5,21)( 6,20)( 7,19)( 8,18)( 9,17)(10,16)(11,15)(12,14)
(22,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,61)(42,60)
(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)
(54,67)(55,66)(56,65)(57,64)(58,63)(59,62);
s3 := Sym(80)!( 3,41)( 4,42)( 5,43)( 6,44)( 7,45)( 8,46)( 9,47)(10,48)(11,49)
(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)
(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)
(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78);
s4 := Sym(80)!(79,80);
poly := sub<Sym(80)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope