Questions?
See the FAQ
or other info.

Polytope of Type {10,4,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,4,8,2}*1280a
if this polytope has a name.
Group : SmallGroup(1280,1035859)
Rank : 5
Schlafli Type : {10,4,8,2}
Number of vertices, edges, etc : 10, 20, 16, 8, 2
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,4,4,2}*640, {10,2,8,2}*640
   4-fold quotients : {5,2,8,2}*320, {10,2,4,2}*320, {10,4,2,2}*320
   5-fold quotients : {2,4,8,2}*256a
   8-fold quotients : {5,2,4,2}*160, {10,2,2,2}*160
   10-fold quotients : {2,4,4,2}*128, {2,2,8,2}*128
   16-fold quotients : {5,2,2,2}*80
   20-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 41)(  2, 45)(  3, 44)(  4, 43)(  5, 42)(  6, 46)(  7, 50)(  8, 49)
(  9, 48)( 10, 47)( 11, 51)( 12, 55)( 13, 54)( 14, 53)( 15, 52)( 16, 56)
( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 61)( 22, 65)( 23, 64)( 24, 63)
( 25, 62)( 26, 66)( 27, 70)( 28, 69)( 29, 68)( 30, 67)( 31, 71)( 32, 75)
( 33, 74)( 34, 73)( 35, 72)( 36, 76)( 37, 80)( 38, 79)( 39, 78)( 40, 77)
( 81,121)( 82,125)( 83,124)( 84,123)( 85,122)( 86,126)( 87,130)( 88,129)
( 89,128)( 90,127)( 91,131)( 92,135)( 93,134)( 94,133)( 95,132)( 96,136)
( 97,140)( 98,139)( 99,138)(100,137)(101,141)(102,145)(103,144)(104,143)
(105,142)(106,146)(107,150)(108,149)(109,148)(110,147)(111,151)(112,155)
(113,154)(114,153)(115,152)(116,156)(117,160)(118,159)(119,158)(120,157)
(161,201)(162,205)(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)
(169,208)(170,207)(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)
(177,220)(178,219)(179,218)(180,217)(181,221)(182,225)(183,224)(184,223)
(185,222)(186,226)(187,230)(188,229)(189,228)(190,227)(191,231)(192,235)
(193,234)(194,233)(195,232)(196,236)(197,240)(198,239)(199,238)(200,237)
(241,281)(242,285)(243,284)(244,283)(245,282)(246,286)(247,290)(248,289)
(249,288)(250,287)(251,291)(252,295)(253,294)(254,293)(255,292)(256,296)
(257,300)(258,299)(259,298)(260,297)(261,301)(262,305)(263,304)(264,303)
(265,302)(266,306)(267,310)(268,309)(269,308)(270,307)(271,311)(272,315)
(273,314)(274,313)(275,312)(276,316)(277,320)(278,319)(279,318)(280,317);;
s1 := (  1,122)(  2,121)(  3,125)(  4,124)(  5,123)(  6,127)(  7,126)(  8,130)
(  9,129)( 10,128)( 11,132)( 12,131)( 13,135)( 14,134)( 15,133)( 16,137)
( 17,136)( 18,140)( 19,139)( 20,138)( 21,142)( 22,141)( 23,145)( 24,144)
( 25,143)( 26,147)( 27,146)( 28,150)( 29,149)( 30,148)( 31,152)( 32,151)
( 33,155)( 34,154)( 35,153)( 36,157)( 37,156)( 38,160)( 39,159)( 40,158)
( 41, 82)( 42, 81)( 43, 85)( 44, 84)( 45, 83)( 46, 87)( 47, 86)( 48, 90)
( 49, 89)( 50, 88)( 51, 92)( 52, 91)( 53, 95)( 54, 94)( 55, 93)( 56, 97)
( 57, 96)( 58,100)( 59, 99)( 60, 98)( 61,102)( 62,101)( 63,105)( 64,104)
( 65,103)( 66,107)( 67,106)( 68,110)( 69,109)( 70,108)( 71,112)( 72,111)
( 73,115)( 74,114)( 75,113)( 76,117)( 77,116)( 78,120)( 79,119)( 80,118)
(161,282)(162,281)(163,285)(164,284)(165,283)(166,287)(167,286)(168,290)
(169,289)(170,288)(171,292)(172,291)(173,295)(174,294)(175,293)(176,297)
(177,296)(178,300)(179,299)(180,298)(181,302)(182,301)(183,305)(184,304)
(185,303)(186,307)(187,306)(188,310)(189,309)(190,308)(191,312)(192,311)
(193,315)(194,314)(195,313)(196,317)(197,316)(198,320)(199,319)(200,318)
(201,242)(202,241)(203,245)(204,244)(205,243)(206,247)(207,246)(208,250)
(209,249)(210,248)(211,252)(212,251)(213,255)(214,254)(215,253)(216,257)
(217,256)(218,260)(219,259)(220,258)(221,262)(222,261)(223,265)(224,264)
(225,263)(226,267)(227,266)(228,270)(229,269)(230,268)(231,272)(232,271)
(233,275)(234,274)(235,273)(236,277)(237,276)(238,280)(239,279)(240,278);;
s2 := ( 21, 26)( 22, 27)( 23, 28)( 24, 29)( 25, 30)( 31, 36)( 32, 37)( 33, 38)
( 34, 39)( 35, 40)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 71, 76)
( 72, 77)( 73, 78)( 74, 79)( 75, 80)( 81, 91)( 82, 92)( 83, 93)( 84, 94)
( 85, 95)( 86, 96)( 87, 97)( 88, 98)( 89, 99)( 90,100)(101,116)(102,117)
(103,118)(104,119)(105,120)(106,111)(107,112)(108,113)(109,114)(110,115)
(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)
(129,139)(130,140)(141,156)(142,157)(143,158)(144,159)(145,160)(146,151)
(147,152)(148,153)(149,154)(150,155)(161,181)(162,182)(163,183)(164,184)
(165,185)(166,186)(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)
(173,193)(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)
(201,221)(202,222)(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)
(209,229)(210,230)(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)
(217,237)(218,238)(219,239)(220,240)(241,271)(242,272)(243,273)(244,274)
(245,275)(246,276)(247,277)(248,278)(249,279)(250,280)(251,261)(252,262)
(253,263)(254,264)(255,265)(256,266)(257,267)(258,268)(259,269)(260,270)
(281,311)(282,312)(283,313)(284,314)(285,315)(286,316)(287,317)(288,318)
(289,319)(290,320)(291,301)(292,302)(293,303)(294,304)(295,305)(296,306)
(297,307)(298,308)(299,309)(300,310);;
s3 := (  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)(  8,168)
(  9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)( 16,176)
( 17,177)( 18,178)( 19,179)( 20,180)( 21,186)( 22,187)( 23,188)( 24,189)
( 25,190)( 26,181)( 27,182)( 28,183)( 29,184)( 30,185)( 31,196)( 32,197)
( 33,198)( 34,199)( 35,200)( 36,191)( 37,192)( 38,193)( 39,194)( 40,195)
( 41,201)( 42,202)( 43,203)( 44,204)( 45,205)( 46,206)( 47,207)( 48,208)
( 49,209)( 50,210)( 51,211)( 52,212)( 53,213)( 54,214)( 55,215)( 56,216)
( 57,217)( 58,218)( 59,219)( 60,220)( 61,226)( 62,227)( 63,228)( 64,229)
( 65,230)( 66,221)( 67,222)( 68,223)( 69,224)( 70,225)( 71,236)( 72,237)
( 73,238)( 74,239)( 75,240)( 76,231)( 77,232)( 78,233)( 79,234)( 80,235)
( 81,241)( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)
( 89,249)( 90,250)( 91,251)( 92,252)( 93,253)( 94,254)( 95,255)( 96,256)
( 97,257)( 98,258)( 99,259)(100,260)(101,266)(102,267)(103,268)(104,269)
(105,270)(106,261)(107,262)(108,263)(109,264)(110,265)(111,276)(112,277)
(113,278)(114,279)(115,280)(116,271)(117,272)(118,273)(119,274)(120,275)
(121,281)(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)(128,288)
(129,289)(130,290)(131,291)(132,292)(133,293)(134,294)(135,295)(136,296)
(137,297)(138,298)(139,299)(140,300)(141,306)(142,307)(143,308)(144,309)
(145,310)(146,301)(147,302)(148,303)(149,304)(150,305)(151,316)(152,317)
(153,318)(154,319)(155,320)(156,311)(157,312)(158,313)(159,314)(160,315);;
s4 := (321,322);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(  1, 41)(  2, 45)(  3, 44)(  4, 43)(  5, 42)(  6, 46)(  7, 50)
(  8, 49)(  9, 48)( 10, 47)( 11, 51)( 12, 55)( 13, 54)( 14, 53)( 15, 52)
( 16, 56)( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 61)( 22, 65)( 23, 64)
( 24, 63)( 25, 62)( 26, 66)( 27, 70)( 28, 69)( 29, 68)( 30, 67)( 31, 71)
( 32, 75)( 33, 74)( 34, 73)( 35, 72)( 36, 76)( 37, 80)( 38, 79)( 39, 78)
( 40, 77)( 81,121)( 82,125)( 83,124)( 84,123)( 85,122)( 86,126)( 87,130)
( 88,129)( 89,128)( 90,127)( 91,131)( 92,135)( 93,134)( 94,133)( 95,132)
( 96,136)( 97,140)( 98,139)( 99,138)(100,137)(101,141)(102,145)(103,144)
(104,143)(105,142)(106,146)(107,150)(108,149)(109,148)(110,147)(111,151)
(112,155)(113,154)(114,153)(115,152)(116,156)(117,160)(118,159)(119,158)
(120,157)(161,201)(162,205)(163,204)(164,203)(165,202)(166,206)(167,210)
(168,209)(169,208)(170,207)(171,211)(172,215)(173,214)(174,213)(175,212)
(176,216)(177,220)(178,219)(179,218)(180,217)(181,221)(182,225)(183,224)
(184,223)(185,222)(186,226)(187,230)(188,229)(189,228)(190,227)(191,231)
(192,235)(193,234)(194,233)(195,232)(196,236)(197,240)(198,239)(199,238)
(200,237)(241,281)(242,285)(243,284)(244,283)(245,282)(246,286)(247,290)
(248,289)(249,288)(250,287)(251,291)(252,295)(253,294)(254,293)(255,292)
(256,296)(257,300)(258,299)(259,298)(260,297)(261,301)(262,305)(263,304)
(264,303)(265,302)(266,306)(267,310)(268,309)(269,308)(270,307)(271,311)
(272,315)(273,314)(274,313)(275,312)(276,316)(277,320)(278,319)(279,318)
(280,317);
s1 := Sym(322)!(  1,122)(  2,121)(  3,125)(  4,124)(  5,123)(  6,127)(  7,126)
(  8,130)(  9,129)( 10,128)( 11,132)( 12,131)( 13,135)( 14,134)( 15,133)
( 16,137)( 17,136)( 18,140)( 19,139)( 20,138)( 21,142)( 22,141)( 23,145)
( 24,144)( 25,143)( 26,147)( 27,146)( 28,150)( 29,149)( 30,148)( 31,152)
( 32,151)( 33,155)( 34,154)( 35,153)( 36,157)( 37,156)( 38,160)( 39,159)
( 40,158)( 41, 82)( 42, 81)( 43, 85)( 44, 84)( 45, 83)( 46, 87)( 47, 86)
( 48, 90)( 49, 89)( 50, 88)( 51, 92)( 52, 91)( 53, 95)( 54, 94)( 55, 93)
( 56, 97)( 57, 96)( 58,100)( 59, 99)( 60, 98)( 61,102)( 62,101)( 63,105)
( 64,104)( 65,103)( 66,107)( 67,106)( 68,110)( 69,109)( 70,108)( 71,112)
( 72,111)( 73,115)( 74,114)( 75,113)( 76,117)( 77,116)( 78,120)( 79,119)
( 80,118)(161,282)(162,281)(163,285)(164,284)(165,283)(166,287)(167,286)
(168,290)(169,289)(170,288)(171,292)(172,291)(173,295)(174,294)(175,293)
(176,297)(177,296)(178,300)(179,299)(180,298)(181,302)(182,301)(183,305)
(184,304)(185,303)(186,307)(187,306)(188,310)(189,309)(190,308)(191,312)
(192,311)(193,315)(194,314)(195,313)(196,317)(197,316)(198,320)(199,319)
(200,318)(201,242)(202,241)(203,245)(204,244)(205,243)(206,247)(207,246)
(208,250)(209,249)(210,248)(211,252)(212,251)(213,255)(214,254)(215,253)
(216,257)(217,256)(218,260)(219,259)(220,258)(221,262)(222,261)(223,265)
(224,264)(225,263)(226,267)(227,266)(228,270)(229,269)(230,268)(231,272)
(232,271)(233,275)(234,274)(235,273)(236,277)(237,276)(238,280)(239,279)
(240,278);
s2 := Sym(322)!( 21, 26)( 22, 27)( 23, 28)( 24, 29)( 25, 30)( 31, 36)( 32, 37)
( 33, 38)( 34, 39)( 35, 40)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)
( 71, 76)( 72, 77)( 73, 78)( 74, 79)( 75, 80)( 81, 91)( 82, 92)( 83, 93)
( 84, 94)( 85, 95)( 86, 96)( 87, 97)( 88, 98)( 89, 99)( 90,100)(101,116)
(102,117)(103,118)(104,119)(105,120)(106,111)(107,112)(108,113)(109,114)
(110,115)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)
(128,138)(129,139)(130,140)(141,156)(142,157)(143,158)(144,159)(145,160)
(146,151)(147,152)(148,153)(149,154)(150,155)(161,181)(162,182)(163,183)
(164,184)(165,185)(166,186)(167,187)(168,188)(169,189)(170,190)(171,191)
(172,192)(173,193)(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)
(180,200)(201,221)(202,222)(203,223)(204,224)(205,225)(206,226)(207,227)
(208,228)(209,229)(210,230)(211,231)(212,232)(213,233)(214,234)(215,235)
(216,236)(217,237)(218,238)(219,239)(220,240)(241,271)(242,272)(243,273)
(244,274)(245,275)(246,276)(247,277)(248,278)(249,279)(250,280)(251,261)
(252,262)(253,263)(254,264)(255,265)(256,266)(257,267)(258,268)(259,269)
(260,270)(281,311)(282,312)(283,313)(284,314)(285,315)(286,316)(287,317)
(288,318)(289,319)(290,320)(291,301)(292,302)(293,303)(294,304)(295,305)
(296,306)(297,307)(298,308)(299,309)(300,310);
s3 := Sym(322)!(  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)
(  8,168)(  9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)
( 16,176)( 17,177)( 18,178)( 19,179)( 20,180)( 21,186)( 22,187)( 23,188)
( 24,189)( 25,190)( 26,181)( 27,182)( 28,183)( 29,184)( 30,185)( 31,196)
( 32,197)( 33,198)( 34,199)( 35,200)( 36,191)( 37,192)( 38,193)( 39,194)
( 40,195)( 41,201)( 42,202)( 43,203)( 44,204)( 45,205)( 46,206)( 47,207)
( 48,208)( 49,209)( 50,210)( 51,211)( 52,212)( 53,213)( 54,214)( 55,215)
( 56,216)( 57,217)( 58,218)( 59,219)( 60,220)( 61,226)( 62,227)( 63,228)
( 64,229)( 65,230)( 66,221)( 67,222)( 68,223)( 69,224)( 70,225)( 71,236)
( 72,237)( 73,238)( 74,239)( 75,240)( 76,231)( 77,232)( 78,233)( 79,234)
( 80,235)( 81,241)( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)
( 88,248)( 89,249)( 90,250)( 91,251)( 92,252)( 93,253)( 94,254)( 95,255)
( 96,256)( 97,257)( 98,258)( 99,259)(100,260)(101,266)(102,267)(103,268)
(104,269)(105,270)(106,261)(107,262)(108,263)(109,264)(110,265)(111,276)
(112,277)(113,278)(114,279)(115,280)(116,271)(117,272)(118,273)(119,274)
(120,275)(121,281)(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)
(128,288)(129,289)(130,290)(131,291)(132,292)(133,293)(134,294)(135,295)
(136,296)(137,297)(138,298)(139,299)(140,300)(141,306)(142,307)(143,308)
(144,309)(145,310)(146,301)(147,302)(148,303)(149,304)(150,305)(151,316)
(152,317)(153,318)(154,319)(155,320)(156,311)(157,312)(158,313)(159,314)
(160,315);
s4 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope