Questions?
See the FAQ
or other info.

Polytope of Type {2,20,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,8,2}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1036171)
Rank : 5
Schlafli Type : {2,20,8,2}
Number of vertices, edges, etc : 2, 20, 80, 8, 2
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,20,4,2}*640
   4-fold quotients : {2,20,2,2}*320, {2,10,4,2}*320
   5-fold quotients : {2,4,8,2}*256b
   8-fold quotients : {2,10,2,2}*160
   10-fold quotients : {2,4,4,2}*128
   16-fold quotients : {2,5,2,2}*80
   20-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(13,18)(14,22)(15,21)(16,20)(17,19)(24,27)
(25,26)(29,32)(30,31)(33,38)(34,42)(35,41)(36,40)(37,39)(43,63)(44,67)(45,66)
(46,65)(47,64)(48,68)(49,72)(50,71)(51,70)(52,69)(53,78)(54,82)(55,81)(56,80)
(57,79)(58,73)(59,77)(60,76)(61,75)(62,74);;
s2 := ( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)(12,50)
(13,59)(14,58)(15,62)(16,61)(17,60)(18,54)(19,53)(20,57)(21,56)(22,55)(23,64)
(24,63)(25,67)(26,66)(27,65)(28,69)(29,68)(30,72)(31,71)(32,70)(33,79)(34,78)
(35,82)(36,81)(37,80)(38,74)(39,73)(40,77)(41,76)(42,75);;
s3 := (13,18)(14,19)(15,20)(16,21)(17,22)(23,28)(24,29)(25,30)(26,31)(27,32)
(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(63,78)
(64,79)(65,80)(66,81)(67,82)(68,73)(69,74)(70,75)(71,76)(72,77);;
s4 := (83,84);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(84)!(1,2);
s1 := Sym(84)!( 4, 7)( 5, 6)( 9,12)(10,11)(13,18)(14,22)(15,21)(16,20)(17,19)
(24,27)(25,26)(29,32)(30,31)(33,38)(34,42)(35,41)(36,40)(37,39)(43,63)(44,67)
(45,66)(46,65)(47,64)(48,68)(49,72)(50,71)(51,70)(52,69)(53,78)(54,82)(55,81)
(56,80)(57,79)(58,73)(59,77)(60,76)(61,75)(62,74);
s2 := Sym(84)!( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)
(12,50)(13,59)(14,58)(15,62)(16,61)(17,60)(18,54)(19,53)(20,57)(21,56)(22,55)
(23,64)(24,63)(25,67)(26,66)(27,65)(28,69)(29,68)(30,72)(31,71)(32,70)(33,79)
(34,78)(35,82)(36,81)(37,80)(38,74)(39,73)(40,77)(41,76)(42,75);
s3 := Sym(84)!(13,18)(14,19)(15,20)(16,21)(17,22)(23,28)(24,29)(25,30)(26,31)
(27,32)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)
(63,78)(64,79)(65,80)(66,81)(67,82)(68,73)(69,74)(70,75)(71,76)(72,77);
s4 := Sym(84)!(83,84);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope