Questions?
See the FAQ
or other info.

Polytope of Type {80,2,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {80,2,2,2}*1280
if this polytope has a name.
Group : SmallGroup(1280,1076043)
Rank : 5
Schlafli Type : {80,2,2,2}
Number of vertices, edges, etc : 80, 80, 2, 2, 2
Order of s0s1s2s3s4 : 80
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {40,2,2,2}*640
   4-fold quotients : {20,2,2,2}*320
   5-fold quotients : {16,2,2,2}*256
   8-fold quotients : {10,2,2,2}*160
   10-fold quotients : {8,2,2,2}*128
   16-fold quotients : {5,2,2,2}*80
   20-fold quotients : {4,2,2,2}*64
   40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(11,16)(12,20)(13,19)(14,18)(15,17)(21,31)
(22,35)(23,34)(24,33)(25,32)(26,36)(27,40)(28,39)(29,38)(30,37)(41,61)(42,65)
(43,64)(44,63)(45,62)(46,66)(47,70)(48,69)(49,68)(50,67)(51,76)(52,80)(53,79)
(54,78)(55,77)(56,71)(57,75)(58,74)(59,73)(60,72);;
s1 := ( 1,42)( 2,41)( 3,45)( 4,44)( 5,43)( 6,47)( 7,46)( 8,50)( 9,49)(10,48)
(11,57)(12,56)(13,60)(14,59)(15,58)(16,52)(17,51)(18,55)(19,54)(20,53)(21,72)
(22,71)(23,75)(24,74)(25,73)(26,77)(27,76)(28,80)(29,79)(30,78)(31,62)(32,61)
(33,65)(34,64)(35,63)(36,67)(37,66)(38,70)(39,69)(40,68);;
s2 := (81,82);;
s3 := (83,84);;
s4 := (85,86);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(86)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(11,16)(12,20)(13,19)(14,18)(15,17)
(21,31)(22,35)(23,34)(24,33)(25,32)(26,36)(27,40)(28,39)(29,38)(30,37)(41,61)
(42,65)(43,64)(44,63)(45,62)(46,66)(47,70)(48,69)(49,68)(50,67)(51,76)(52,80)
(53,79)(54,78)(55,77)(56,71)(57,75)(58,74)(59,73)(60,72);
s1 := Sym(86)!( 1,42)( 2,41)( 3,45)( 4,44)( 5,43)( 6,47)( 7,46)( 8,50)( 9,49)
(10,48)(11,57)(12,56)(13,60)(14,59)(15,58)(16,52)(17,51)(18,55)(19,54)(20,53)
(21,72)(22,71)(23,75)(24,74)(25,73)(26,77)(27,76)(28,80)(29,79)(30,78)(31,62)
(32,61)(33,65)(34,64)(35,63)(36,67)(37,66)(38,70)(39,69)(40,68);
s2 := Sym(86)!(81,82);
s3 := Sym(86)!(83,84);
s4 := Sym(86)!(85,86);
poly := sub<Sym(86)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope