Questions?
See the FAQ
or other info.

Polytope of Type {8,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10}*1280a
if this polytope has a name.
Group : SmallGroup(1280,1116393)
Rank : 3
Schlafli Type : {8,10}
Number of vertices, edges, etc : 64, 320, 80
Order of s0s1s2 : 20
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,5}*640a, {4,10}*640a
   4-fold quotients : {8,5}*320a, {8,5}*320b, {4,5}*320
   8-fold quotients : {4,5}*160
   64-fold quotients : {2,5}*20
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,125)(  2,126)(  3,127)(  4,128)(  5,122)(  6,121)(  7,124)(  8,123)
(  9,120)( 10,119)( 11,118)( 12,117)( 13,115)( 14,116)( 15,113)( 16,114)
( 17,112)( 18,111)( 19,110)( 20,109)( 21,107)( 22,108)( 23,105)( 24,106)
( 25,101)( 26,102)( 27,103)( 28,104)( 29, 98)( 30, 97)( 31,100)( 32, 99)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 90)( 38, 89)( 39, 92)( 40, 91)
( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 83)( 46, 84)( 47, 81)( 48, 82)
( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)( 56, 74)
( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 66)( 62, 65)( 63, 68)( 64, 67);;
s1 := (  5,  6)(  7,  8)(  9, 10)( 11, 12)( 17, 27)( 18, 28)( 19, 25)( 20, 26)
( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)( 36, 44)
( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 49, 51)( 50, 52)( 53, 56)( 54, 55)
( 57, 60)( 58, 59)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,123)( 68,124)
( 69,126)( 70,125)( 71,128)( 72,127)( 73,113)( 74,114)( 75,115)( 76,116)
( 77,118)( 78,117)( 79,120)( 80,119)( 81, 98)( 82, 97)( 83,100)( 84, 99)
( 85,101)( 86,102)( 87,103)( 88,104)( 89,105)( 90,106)( 91,107)( 92,108)
( 93,110)( 94,109)( 95,112)( 96,111);;
s2 := (  1,  2)(  3,  4)(  9, 82)( 10, 81)( 11, 84)( 12, 83)( 13, 85)( 14, 86)
( 15, 87)( 16, 88)( 17,106)( 18,105)( 19,108)( 20,107)( 21,109)( 22,110)
( 23,111)( 24,112)( 25, 58)( 26, 57)( 27, 60)( 28, 59)( 29, 61)( 30, 62)
( 31, 63)( 32, 64)( 33, 36)( 34, 35)( 37, 39)( 38, 40)( 41,114)( 42,113)
( 43,116)( 44,115)( 45,117)( 46,118)( 47,119)( 48,120)( 49, 76)( 50, 75)
( 51, 74)( 52, 73)( 53, 79)( 54, 80)( 55, 77)( 56, 78)( 65, 97)( 66, 98)
( 67, 99)( 68,100)( 69,102)( 70,101)( 71,104)( 72,103)( 89, 91)( 90, 92)
( 93, 96)( 94, 95)(125,126)(127,128);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  1,125)(  2,126)(  3,127)(  4,128)(  5,122)(  6,121)(  7,124)
(  8,123)(  9,120)( 10,119)( 11,118)( 12,117)( 13,115)( 14,116)( 15,113)
( 16,114)( 17,112)( 18,111)( 19,110)( 20,109)( 21,107)( 22,108)( 23,105)
( 24,106)( 25,101)( 26,102)( 27,103)( 28,104)( 29, 98)( 30, 97)( 31,100)
( 32, 99)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 90)( 38, 89)( 39, 92)
( 40, 91)( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 83)( 46, 84)( 47, 81)
( 48, 82)( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)
( 56, 74)( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 66)( 62, 65)( 63, 68)
( 64, 67);
s1 := Sym(128)!(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 17, 27)( 18, 28)( 19, 25)
( 20, 26)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)
( 36, 44)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 49, 51)( 50, 52)( 53, 56)
( 54, 55)( 57, 60)( 58, 59)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,123)
( 68,124)( 69,126)( 70,125)( 71,128)( 72,127)( 73,113)( 74,114)( 75,115)
( 76,116)( 77,118)( 78,117)( 79,120)( 80,119)( 81, 98)( 82, 97)( 83,100)
( 84, 99)( 85,101)( 86,102)( 87,103)( 88,104)( 89,105)( 90,106)( 91,107)
( 92,108)( 93,110)( 94,109)( 95,112)( 96,111);
s2 := Sym(128)!(  1,  2)(  3,  4)(  9, 82)( 10, 81)( 11, 84)( 12, 83)( 13, 85)
( 14, 86)( 15, 87)( 16, 88)( 17,106)( 18,105)( 19,108)( 20,107)( 21,109)
( 22,110)( 23,111)( 24,112)( 25, 58)( 26, 57)( 27, 60)( 28, 59)( 29, 61)
( 30, 62)( 31, 63)( 32, 64)( 33, 36)( 34, 35)( 37, 39)( 38, 40)( 41,114)
( 42,113)( 43,116)( 44,115)( 45,117)( 46,118)( 47,119)( 48,120)( 49, 76)
( 50, 75)( 51, 74)( 52, 73)( 53, 79)( 54, 80)( 55, 77)( 56, 78)( 65, 97)
( 66, 98)( 67, 99)( 68,100)( 69,102)( 70,101)( 71,104)( 72,103)( 89, 91)
( 90, 92)( 93, 96)( 94, 95)(125,126)(127,128);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope