Questions?
See the FAQ
or other info.

Polytope of Type {8,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10}*1280d
if this polytope has a name.
Group : SmallGroup(1280,1116454)
Rank : 3
Schlafli Type : {8,10}
Number of vertices, edges, etc : 64, 320, 80
Order of s0s1s2 : 20
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,5}*640b, {4,10}*640b
   4-fold quotients : {4,5}*320, {4,10}*320a, {4,10}*320b
   8-fold quotients : {4,5}*160
   32-fold quotients : {2,10}*40
   64-fold quotients : {2,5}*20
   160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 60)(  2, 59)(  3, 57)(  4, 58)(  5, 64)(  6, 63)(  7, 61)(  8, 62)
(  9, 52)( 10, 51)( 11, 49)( 12, 50)( 13, 56)( 14, 55)( 15, 53)( 16, 54)
( 17, 44)( 18, 43)( 19, 41)( 20, 42)( 21, 48)( 22, 47)( 23, 45)( 24, 46)
( 25, 36)( 26, 35)( 27, 33)( 28, 34)( 29, 40)( 30, 39)( 31, 37)( 32, 38)
( 65,124)( 66,123)( 67,121)( 68,122)( 69,128)( 70,127)( 71,125)( 72,126)
( 73,116)( 74,115)( 75,113)( 76,114)( 77,120)( 78,119)( 79,117)( 80,118)
( 81,108)( 82,107)( 83,105)( 84,106)( 85,112)( 86,111)( 87,109)( 88,110)
( 89,100)( 90, 99)( 91, 97)( 92, 98)( 93,104)( 94,103)( 95,101)( 96,102);;
s1 := (  3,  4)(  7,  8)(  9, 98)( 10, 97)( 11, 99)( 12,100)( 13,102)( 14,101)
( 15,103)( 16,104)( 17, 58)( 18, 57)( 19, 59)( 20, 60)( 21, 62)( 22, 61)
( 23, 63)( 24, 64)( 25, 90)( 26, 89)( 27, 91)( 28, 92)( 29, 94)( 30, 93)
( 31, 95)( 32, 96)( 33, 74)( 34, 73)( 35, 75)( 36, 76)( 37, 78)( 38, 77)
( 39, 79)( 40, 80)( 41, 42)( 45, 46)( 49,113)( 50,114)( 51,116)( 52,115)
( 53,117)( 54,118)( 55,120)( 56,119)( 67, 68)( 71, 72)( 81,122)( 82,121)
( 83,123)( 84,124)( 85,126)( 86,125)( 87,127)( 88,128)(105,106)(109,110);;
s2 := (  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9, 13)( 10, 14)( 11, 16)( 12, 15)
( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)( 24, 28)
( 33, 45)( 34, 46)( 35, 48)( 36, 47)( 37, 41)( 38, 42)( 39, 44)( 40, 43)
( 49, 54)( 50, 53)( 51, 55)( 52, 56)( 57, 62)( 58, 61)( 59, 63)( 60, 64)
( 65,125)( 66,126)( 67,128)( 68,127)( 69,121)( 70,122)( 71,124)( 72,123)
( 73,117)( 74,118)( 75,120)( 76,119)( 77,113)( 78,114)( 79,116)( 80,115)
( 81,101)( 82,102)( 83,104)( 84,103)( 85, 97)( 86, 98)( 87,100)( 88, 99)
( 89,109)( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  1, 60)(  2, 59)(  3, 57)(  4, 58)(  5, 64)(  6, 63)(  7, 61)
(  8, 62)(  9, 52)( 10, 51)( 11, 49)( 12, 50)( 13, 56)( 14, 55)( 15, 53)
( 16, 54)( 17, 44)( 18, 43)( 19, 41)( 20, 42)( 21, 48)( 22, 47)( 23, 45)
( 24, 46)( 25, 36)( 26, 35)( 27, 33)( 28, 34)( 29, 40)( 30, 39)( 31, 37)
( 32, 38)( 65,124)( 66,123)( 67,121)( 68,122)( 69,128)( 70,127)( 71,125)
( 72,126)( 73,116)( 74,115)( 75,113)( 76,114)( 77,120)( 78,119)( 79,117)
( 80,118)( 81,108)( 82,107)( 83,105)( 84,106)( 85,112)( 86,111)( 87,109)
( 88,110)( 89,100)( 90, 99)( 91, 97)( 92, 98)( 93,104)( 94,103)( 95,101)
( 96,102);
s1 := Sym(128)!(  3,  4)(  7,  8)(  9, 98)( 10, 97)( 11, 99)( 12,100)( 13,102)
( 14,101)( 15,103)( 16,104)( 17, 58)( 18, 57)( 19, 59)( 20, 60)( 21, 62)
( 22, 61)( 23, 63)( 24, 64)( 25, 90)( 26, 89)( 27, 91)( 28, 92)( 29, 94)
( 30, 93)( 31, 95)( 32, 96)( 33, 74)( 34, 73)( 35, 75)( 36, 76)( 37, 78)
( 38, 77)( 39, 79)( 40, 80)( 41, 42)( 45, 46)( 49,113)( 50,114)( 51,116)
( 52,115)( 53,117)( 54,118)( 55,120)( 56,119)( 67, 68)( 71, 72)( 81,122)
( 82,121)( 83,123)( 84,124)( 85,126)( 86,125)( 87,127)( 88,128)(105,106)
(109,110);
s2 := Sym(128)!(  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9, 13)( 10, 14)( 11, 16)
( 12, 15)( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)
( 24, 28)( 33, 45)( 34, 46)( 35, 48)( 36, 47)( 37, 41)( 38, 42)( 39, 44)
( 40, 43)( 49, 54)( 50, 53)( 51, 55)( 52, 56)( 57, 62)( 58, 61)( 59, 63)
( 60, 64)( 65,125)( 66,126)( 67,128)( 68,127)( 69,121)( 70,122)( 71,124)
( 72,123)( 73,117)( 74,118)( 75,120)( 76,119)( 77,113)( 78,114)( 79,116)
( 80,115)( 81,101)( 82,102)( 83,104)( 84,103)( 85, 97)( 86, 98)( 87,100)
( 88, 99)( 89,109)( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)
( 96,107);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope