Questions?
See the FAQ
or other info.

Polytope of Type {20,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,8,2}*1280a
if this polytope has a name.
Group : SmallGroup(1280,141633)
Rank : 4
Schlafli Type : {20,8,2}
Number of vertices, edges, etc : 40, 160, 16, 2
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,4,2}*640, {20,8,2}*640a, {20,8,2}*640b
   4-fold quotients : {20,4,2}*320, {10,8,2}*320
   5-fold quotients : {4,8,2}*256a
   8-fold quotients : {20,2,2}*160, {10,4,2}*160
   10-fold quotients : {4,8,2}*128a, {4,8,2}*128b, {4,4,2}*128
   16-fold quotients : {10,2,2}*80
   20-fold quotients : {4,4,2}*64, {2,8,2}*64
   32-fold quotients : {5,2,2}*40
   40-fold quotients : {2,4,2}*32, {4,2,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 81)(  2, 85)(  3, 84)(  4, 83)(  5, 82)(  6, 86)(  7, 90)(  8, 89)
(  9, 88)( 10, 87)( 11, 91)( 12, 95)( 13, 94)( 14, 93)( 15, 92)( 16, 96)
( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21,101)( 22,105)( 23,104)( 24,103)
( 25,102)( 26,106)( 27,110)( 28,109)( 29,108)( 30,107)( 31,111)( 32,115)
( 33,114)( 34,113)( 35,112)( 36,116)( 37,120)( 38,119)( 39,118)( 40,117)
( 41,126)( 42,130)( 43,129)( 44,128)( 45,127)( 46,121)( 47,125)( 48,124)
( 49,123)( 50,122)( 51,136)( 52,140)( 53,139)( 54,138)( 55,137)( 56,131)
( 57,135)( 58,134)( 59,133)( 60,132)( 61,146)( 62,150)( 63,149)( 64,148)
( 65,147)( 66,141)( 67,145)( 68,144)( 69,143)( 70,142)( 71,156)( 72,160)
( 73,159)( 74,158)( 75,157)( 76,151)( 77,155)( 78,154)( 79,153)( 80,152)
(161,241)(162,245)(163,244)(164,243)(165,242)(166,246)(167,250)(168,249)
(169,248)(170,247)(171,251)(172,255)(173,254)(174,253)(175,252)(176,256)
(177,260)(178,259)(179,258)(180,257)(181,261)(182,265)(183,264)(184,263)
(185,262)(186,266)(187,270)(188,269)(189,268)(190,267)(191,271)(192,275)
(193,274)(194,273)(195,272)(196,276)(197,280)(198,279)(199,278)(200,277)
(201,286)(202,290)(203,289)(204,288)(205,287)(206,281)(207,285)(208,284)
(209,283)(210,282)(211,296)(212,300)(213,299)(214,298)(215,297)(216,291)
(217,295)(218,294)(219,293)(220,292)(221,306)(222,310)(223,309)(224,308)
(225,307)(226,301)(227,305)(228,304)(229,303)(230,302)(231,316)(232,320)
(233,319)(234,318)(235,317)(236,311)(237,315)(238,314)(239,313)(240,312);;
s1 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 52)( 42, 51)( 43, 55)( 44, 54)( 45, 53)( 46, 57)( 47, 56)( 48, 60)
( 49, 59)( 50, 58)( 61, 72)( 62, 71)( 63, 75)( 64, 74)( 65, 73)( 66, 77)
( 67, 76)( 68, 80)( 69, 79)( 70, 78)( 81,102)( 82,101)( 83,105)( 84,104)
( 85,103)( 86,107)( 87,106)( 88,110)( 89,109)( 90,108)( 91,112)( 92,111)
( 93,115)( 94,114)( 95,113)( 96,117)( 97,116)( 98,120)( 99,119)(100,118)
(121,152)(122,151)(123,155)(124,154)(125,153)(126,157)(127,156)(128,160)
(129,159)(130,158)(131,142)(132,141)(133,145)(134,144)(135,143)(136,147)
(137,146)(138,150)(139,149)(140,148)(161,202)(162,201)(163,205)(164,204)
(165,203)(166,207)(167,206)(168,210)(169,209)(170,208)(171,212)(172,211)
(173,215)(174,214)(175,213)(176,217)(177,216)(178,220)(179,219)(180,218)
(181,222)(182,221)(183,225)(184,224)(185,223)(186,227)(187,226)(188,230)
(189,229)(190,228)(191,232)(192,231)(193,235)(194,234)(195,233)(196,237)
(197,236)(198,240)(199,239)(200,238)(241,307)(242,306)(243,310)(244,309)
(245,308)(246,302)(247,301)(248,305)(249,304)(250,303)(251,317)(252,316)
(253,320)(254,319)(255,318)(256,312)(257,311)(258,315)(259,314)(260,313)
(261,287)(262,286)(263,290)(264,289)(265,288)(266,282)(267,281)(268,285)
(269,284)(270,283)(271,297)(272,296)(273,300)(274,299)(275,298)(276,292)
(277,291)(278,295)(279,294)(280,293);;
s2 := (  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)(  8,168)
(  9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)( 16,176)
( 17,177)( 18,178)( 19,179)( 20,180)( 21,186)( 22,187)( 23,188)( 24,189)
( 25,190)( 26,181)( 27,182)( 28,183)( 29,184)( 30,185)( 31,196)( 32,197)
( 33,198)( 34,199)( 35,200)( 36,191)( 37,192)( 38,193)( 39,194)( 40,195)
( 41,211)( 42,212)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)( 48,218)
( 49,219)( 50,220)( 51,201)( 52,202)( 53,203)( 54,204)( 55,205)( 56,206)
( 57,207)( 58,208)( 59,209)( 60,210)( 61,236)( 62,237)( 63,238)( 64,239)
( 65,240)( 66,231)( 67,232)( 68,233)( 69,234)( 70,235)( 71,226)( 72,227)
( 73,228)( 74,229)( 75,230)( 76,221)( 77,222)( 78,223)( 79,224)( 80,225)
( 81,241)( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)
( 89,249)( 90,250)( 91,251)( 92,252)( 93,253)( 94,254)( 95,255)( 96,256)
( 97,257)( 98,258)( 99,259)(100,260)(101,266)(102,267)(103,268)(104,269)
(105,270)(106,261)(107,262)(108,263)(109,264)(110,265)(111,276)(112,277)
(113,278)(114,279)(115,280)(116,271)(117,272)(118,273)(119,274)(120,275)
(121,291)(122,292)(123,293)(124,294)(125,295)(126,296)(127,297)(128,298)
(129,299)(130,300)(131,281)(132,282)(133,283)(134,284)(135,285)(136,286)
(137,287)(138,288)(139,289)(140,290)(141,316)(142,317)(143,318)(144,319)
(145,320)(146,311)(147,312)(148,313)(149,314)(150,315)(151,306)(152,307)
(153,308)(154,309)(155,310)(156,301)(157,302)(158,303)(159,304)(160,305);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(  1, 81)(  2, 85)(  3, 84)(  4, 83)(  5, 82)(  6, 86)(  7, 90)
(  8, 89)(  9, 88)( 10, 87)( 11, 91)( 12, 95)( 13, 94)( 14, 93)( 15, 92)
( 16, 96)( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21,101)( 22,105)( 23,104)
( 24,103)( 25,102)( 26,106)( 27,110)( 28,109)( 29,108)( 30,107)( 31,111)
( 32,115)( 33,114)( 34,113)( 35,112)( 36,116)( 37,120)( 38,119)( 39,118)
( 40,117)( 41,126)( 42,130)( 43,129)( 44,128)( 45,127)( 46,121)( 47,125)
( 48,124)( 49,123)( 50,122)( 51,136)( 52,140)( 53,139)( 54,138)( 55,137)
( 56,131)( 57,135)( 58,134)( 59,133)( 60,132)( 61,146)( 62,150)( 63,149)
( 64,148)( 65,147)( 66,141)( 67,145)( 68,144)( 69,143)( 70,142)( 71,156)
( 72,160)( 73,159)( 74,158)( 75,157)( 76,151)( 77,155)( 78,154)( 79,153)
( 80,152)(161,241)(162,245)(163,244)(164,243)(165,242)(166,246)(167,250)
(168,249)(169,248)(170,247)(171,251)(172,255)(173,254)(174,253)(175,252)
(176,256)(177,260)(178,259)(179,258)(180,257)(181,261)(182,265)(183,264)
(184,263)(185,262)(186,266)(187,270)(188,269)(189,268)(190,267)(191,271)
(192,275)(193,274)(194,273)(195,272)(196,276)(197,280)(198,279)(199,278)
(200,277)(201,286)(202,290)(203,289)(204,288)(205,287)(206,281)(207,285)
(208,284)(209,283)(210,282)(211,296)(212,300)(213,299)(214,298)(215,297)
(216,291)(217,295)(218,294)(219,293)(220,292)(221,306)(222,310)(223,309)
(224,308)(225,307)(226,301)(227,305)(228,304)(229,303)(230,302)(231,316)
(232,320)(233,319)(234,318)(235,317)(236,311)(237,315)(238,314)(239,313)
(240,312);
s1 := Sym(322)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 52)( 42, 51)( 43, 55)( 44, 54)( 45, 53)( 46, 57)( 47, 56)
( 48, 60)( 49, 59)( 50, 58)( 61, 72)( 62, 71)( 63, 75)( 64, 74)( 65, 73)
( 66, 77)( 67, 76)( 68, 80)( 69, 79)( 70, 78)( 81,102)( 82,101)( 83,105)
( 84,104)( 85,103)( 86,107)( 87,106)( 88,110)( 89,109)( 90,108)( 91,112)
( 92,111)( 93,115)( 94,114)( 95,113)( 96,117)( 97,116)( 98,120)( 99,119)
(100,118)(121,152)(122,151)(123,155)(124,154)(125,153)(126,157)(127,156)
(128,160)(129,159)(130,158)(131,142)(132,141)(133,145)(134,144)(135,143)
(136,147)(137,146)(138,150)(139,149)(140,148)(161,202)(162,201)(163,205)
(164,204)(165,203)(166,207)(167,206)(168,210)(169,209)(170,208)(171,212)
(172,211)(173,215)(174,214)(175,213)(176,217)(177,216)(178,220)(179,219)
(180,218)(181,222)(182,221)(183,225)(184,224)(185,223)(186,227)(187,226)
(188,230)(189,229)(190,228)(191,232)(192,231)(193,235)(194,234)(195,233)
(196,237)(197,236)(198,240)(199,239)(200,238)(241,307)(242,306)(243,310)
(244,309)(245,308)(246,302)(247,301)(248,305)(249,304)(250,303)(251,317)
(252,316)(253,320)(254,319)(255,318)(256,312)(257,311)(258,315)(259,314)
(260,313)(261,287)(262,286)(263,290)(264,289)(265,288)(266,282)(267,281)
(268,285)(269,284)(270,283)(271,297)(272,296)(273,300)(274,299)(275,298)
(276,292)(277,291)(278,295)(279,294)(280,293);
s2 := Sym(322)!(  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)
(  8,168)(  9,169)( 10,170)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)
( 16,176)( 17,177)( 18,178)( 19,179)( 20,180)( 21,186)( 22,187)( 23,188)
( 24,189)( 25,190)( 26,181)( 27,182)( 28,183)( 29,184)( 30,185)( 31,196)
( 32,197)( 33,198)( 34,199)( 35,200)( 36,191)( 37,192)( 38,193)( 39,194)
( 40,195)( 41,211)( 42,212)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)
( 48,218)( 49,219)( 50,220)( 51,201)( 52,202)( 53,203)( 54,204)( 55,205)
( 56,206)( 57,207)( 58,208)( 59,209)( 60,210)( 61,236)( 62,237)( 63,238)
( 64,239)( 65,240)( 66,231)( 67,232)( 68,233)( 69,234)( 70,235)( 71,226)
( 72,227)( 73,228)( 74,229)( 75,230)( 76,221)( 77,222)( 78,223)( 79,224)
( 80,225)( 81,241)( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)
( 88,248)( 89,249)( 90,250)( 91,251)( 92,252)( 93,253)( 94,254)( 95,255)
( 96,256)( 97,257)( 98,258)( 99,259)(100,260)(101,266)(102,267)(103,268)
(104,269)(105,270)(106,261)(107,262)(108,263)(109,264)(110,265)(111,276)
(112,277)(113,278)(114,279)(115,280)(116,271)(117,272)(118,273)(119,274)
(120,275)(121,291)(122,292)(123,293)(124,294)(125,295)(126,296)(127,297)
(128,298)(129,299)(130,300)(131,281)(132,282)(133,283)(134,284)(135,285)
(136,286)(137,287)(138,288)(139,289)(140,290)(141,316)(142,317)(143,318)
(144,319)(145,320)(146,311)(147,312)(148,313)(149,314)(150,315)(151,306)
(152,307)(153,308)(154,309)(155,310)(156,301)(157,302)(158,303)(159,304)
(160,305);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope