Questions?
See the FAQ
or other info.

Polytope of Type {2,8,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,40}*1280b
if this polytope has a name.
Group : SmallGroup(1280,145174)
Rank : 4
Schlafli Type : {2,8,40}
Number of vertices, edges, etc : 2, 8, 160, 40
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,40}*640a, {2,8,20}*640b
   4-fold quotients : {2,4,20}*320, {2,2,40}*320
   5-fold quotients : {2,8,8}*256a
   8-fold quotients : {2,2,20}*160, {2,4,10}*160
   10-fold quotients : {2,4,8}*128a, {2,8,4}*128b
   16-fold quotients : {2,2,10}*80
   20-fold quotients : {2,4,4}*64, {2,2,8}*64
   32-fold quotients : {2,2,5}*40
   40-fold quotients : {2,2,4}*32, {2,4,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 83)(  4, 84)(  5, 85)(  6, 86)(  7, 87)(  8, 88)(  9, 89)( 10, 90)
( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)( 18, 98)
( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)( 26,111)
( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)( 34,119)
( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)( 42,117)
( 43,128)( 44,129)( 45,130)( 46,131)( 47,132)( 48,123)( 49,124)( 50,125)
( 51,126)( 52,127)( 53,138)( 54,139)( 55,140)( 56,141)( 57,142)( 58,133)
( 59,134)( 60,135)( 61,136)( 62,137)( 63,143)( 64,144)( 65,145)( 66,146)
( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)( 73,153)( 74,154)
( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)( 81,161)( 82,162)
(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)(170,250)
(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)(178,258)
(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)(186,271)
(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)(194,279)
(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)(202,277)
(203,288)(204,289)(205,290)(206,291)(207,292)(208,283)(209,284)(210,285)
(211,286)(212,287)(213,298)(214,299)(215,300)(216,301)(217,302)(218,293)
(219,294)(220,295)(221,296)(222,297)(223,303)(224,304)(225,305)(226,306)
(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)(233,313)(234,314)
(235,315)(236,316)(237,317)(238,318)(239,319)(240,320)(241,321)(242,322);;
s2 := (  4,  7)(  5,  6)(  9, 12)( 10, 11)( 14, 17)( 15, 16)( 19, 22)( 20, 21)
( 23, 28)( 24, 32)( 25, 31)( 26, 30)( 27, 29)( 33, 38)( 34, 42)( 35, 41)
( 36, 40)( 37, 39)( 43, 53)( 44, 57)( 45, 56)( 46, 55)( 47, 54)( 48, 58)
( 49, 62)( 50, 61)( 51, 60)( 52, 59)( 63, 78)( 64, 82)( 65, 81)( 66, 80)
( 67, 79)( 68, 73)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 83,103)( 84,107)
( 85,106)( 86,105)( 87,104)( 88,108)( 89,112)( 90,111)( 91,110)( 92,109)
( 93,113)( 94,117)( 95,116)( 96,115)( 97,114)( 98,118)( 99,122)(100,121)
(101,120)(102,119)(123,153)(124,157)(125,156)(126,155)(127,154)(128,158)
(129,162)(130,161)(131,160)(132,159)(133,143)(134,147)(135,146)(136,145)
(137,144)(138,148)(139,152)(140,151)(141,150)(142,149)(163,203)(164,207)
(165,206)(166,205)(167,204)(168,208)(169,212)(170,211)(171,210)(172,209)
(173,213)(174,217)(175,216)(176,215)(177,214)(178,218)(179,222)(180,221)
(181,220)(182,219)(183,228)(184,232)(185,231)(186,230)(187,229)(188,223)
(189,227)(190,226)(191,225)(192,224)(193,238)(194,242)(195,241)(196,240)
(197,239)(198,233)(199,237)(200,236)(201,235)(202,234)(243,308)(244,312)
(245,311)(246,310)(247,309)(248,303)(249,307)(250,306)(251,305)(252,304)
(253,318)(254,322)(255,321)(256,320)(257,319)(258,313)(259,317)(260,316)
(261,315)(262,314)(263,288)(264,292)(265,291)(266,290)(267,289)(268,283)
(269,287)(270,286)(271,285)(272,284)(273,298)(274,302)(275,301)(276,300)
(277,299)(278,293)(279,297)(280,296)(281,295)(282,294);;
s3 := (  3,164)(  4,163)(  5,167)(  6,166)(  7,165)(  8,169)(  9,168)( 10,172)
( 11,171)( 12,170)( 13,174)( 14,173)( 15,177)( 16,176)( 17,175)( 18,179)
( 19,178)( 20,182)( 21,181)( 22,180)( 23,189)( 24,188)( 25,192)( 26,191)
( 27,190)( 28,184)( 29,183)( 30,187)( 31,186)( 32,185)( 33,199)( 34,198)
( 35,202)( 36,201)( 37,200)( 38,194)( 39,193)( 40,197)( 41,196)( 42,195)
( 43,214)( 44,213)( 45,217)( 46,216)( 47,215)( 48,219)( 49,218)( 50,222)
( 51,221)( 52,220)( 53,204)( 54,203)( 55,207)( 56,206)( 57,205)( 58,209)
( 59,208)( 60,212)( 61,211)( 62,210)( 63,239)( 64,238)( 65,242)( 66,241)
( 67,240)( 68,234)( 69,233)( 70,237)( 71,236)( 72,235)( 73,229)( 74,228)
( 75,232)( 76,231)( 77,230)( 78,224)( 79,223)( 80,227)( 81,226)( 82,225)
( 83,244)( 84,243)( 85,247)( 86,246)( 87,245)( 88,249)( 89,248)( 90,252)
( 91,251)( 92,250)( 93,254)( 94,253)( 95,257)( 96,256)( 97,255)( 98,259)
( 99,258)(100,262)(101,261)(102,260)(103,269)(104,268)(105,272)(106,271)
(107,270)(108,264)(109,263)(110,267)(111,266)(112,265)(113,279)(114,278)
(115,282)(116,281)(117,280)(118,274)(119,273)(120,277)(121,276)(122,275)
(123,294)(124,293)(125,297)(126,296)(127,295)(128,299)(129,298)(130,302)
(131,301)(132,300)(133,284)(134,283)(135,287)(136,286)(137,285)(138,289)
(139,288)(140,292)(141,291)(142,290)(143,319)(144,318)(145,322)(146,321)
(147,320)(148,314)(149,313)(150,317)(151,316)(152,315)(153,309)(154,308)
(155,312)(156,311)(157,310)(158,304)(159,303)(160,307)(161,306)(162,305);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!(  3, 83)(  4, 84)(  5, 85)(  6, 86)(  7, 87)(  8, 88)(  9, 89)
( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)
( 18, 98)( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)
( 26,111)( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)
( 34,119)( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)
( 42,117)( 43,128)( 44,129)( 45,130)( 46,131)( 47,132)( 48,123)( 49,124)
( 50,125)( 51,126)( 52,127)( 53,138)( 54,139)( 55,140)( 56,141)( 57,142)
( 58,133)( 59,134)( 60,135)( 61,136)( 62,137)( 63,143)( 64,144)( 65,145)
( 66,146)( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)( 73,153)
( 74,154)( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)( 81,161)
( 82,162)(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)
(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)
(178,258)(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)
(186,271)(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)
(194,279)(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)
(202,277)(203,288)(204,289)(205,290)(206,291)(207,292)(208,283)(209,284)
(210,285)(211,286)(212,287)(213,298)(214,299)(215,300)(216,301)(217,302)
(218,293)(219,294)(220,295)(221,296)(222,297)(223,303)(224,304)(225,305)
(226,306)(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)(233,313)
(234,314)(235,315)(236,316)(237,317)(238,318)(239,319)(240,320)(241,321)
(242,322);
s2 := Sym(322)!(  4,  7)(  5,  6)(  9, 12)( 10, 11)( 14, 17)( 15, 16)( 19, 22)
( 20, 21)( 23, 28)( 24, 32)( 25, 31)( 26, 30)( 27, 29)( 33, 38)( 34, 42)
( 35, 41)( 36, 40)( 37, 39)( 43, 53)( 44, 57)( 45, 56)( 46, 55)( 47, 54)
( 48, 58)( 49, 62)( 50, 61)( 51, 60)( 52, 59)( 63, 78)( 64, 82)( 65, 81)
( 66, 80)( 67, 79)( 68, 73)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 83,103)
( 84,107)( 85,106)( 86,105)( 87,104)( 88,108)( 89,112)( 90,111)( 91,110)
( 92,109)( 93,113)( 94,117)( 95,116)( 96,115)( 97,114)( 98,118)( 99,122)
(100,121)(101,120)(102,119)(123,153)(124,157)(125,156)(126,155)(127,154)
(128,158)(129,162)(130,161)(131,160)(132,159)(133,143)(134,147)(135,146)
(136,145)(137,144)(138,148)(139,152)(140,151)(141,150)(142,149)(163,203)
(164,207)(165,206)(166,205)(167,204)(168,208)(169,212)(170,211)(171,210)
(172,209)(173,213)(174,217)(175,216)(176,215)(177,214)(178,218)(179,222)
(180,221)(181,220)(182,219)(183,228)(184,232)(185,231)(186,230)(187,229)
(188,223)(189,227)(190,226)(191,225)(192,224)(193,238)(194,242)(195,241)
(196,240)(197,239)(198,233)(199,237)(200,236)(201,235)(202,234)(243,308)
(244,312)(245,311)(246,310)(247,309)(248,303)(249,307)(250,306)(251,305)
(252,304)(253,318)(254,322)(255,321)(256,320)(257,319)(258,313)(259,317)
(260,316)(261,315)(262,314)(263,288)(264,292)(265,291)(266,290)(267,289)
(268,283)(269,287)(270,286)(271,285)(272,284)(273,298)(274,302)(275,301)
(276,300)(277,299)(278,293)(279,297)(280,296)(281,295)(282,294);
s3 := Sym(322)!(  3,164)(  4,163)(  5,167)(  6,166)(  7,165)(  8,169)(  9,168)
( 10,172)( 11,171)( 12,170)( 13,174)( 14,173)( 15,177)( 16,176)( 17,175)
( 18,179)( 19,178)( 20,182)( 21,181)( 22,180)( 23,189)( 24,188)( 25,192)
( 26,191)( 27,190)( 28,184)( 29,183)( 30,187)( 31,186)( 32,185)( 33,199)
( 34,198)( 35,202)( 36,201)( 37,200)( 38,194)( 39,193)( 40,197)( 41,196)
( 42,195)( 43,214)( 44,213)( 45,217)( 46,216)( 47,215)( 48,219)( 49,218)
( 50,222)( 51,221)( 52,220)( 53,204)( 54,203)( 55,207)( 56,206)( 57,205)
( 58,209)( 59,208)( 60,212)( 61,211)( 62,210)( 63,239)( 64,238)( 65,242)
( 66,241)( 67,240)( 68,234)( 69,233)( 70,237)( 71,236)( 72,235)( 73,229)
( 74,228)( 75,232)( 76,231)( 77,230)( 78,224)( 79,223)( 80,227)( 81,226)
( 82,225)( 83,244)( 84,243)( 85,247)( 86,246)( 87,245)( 88,249)( 89,248)
( 90,252)( 91,251)( 92,250)( 93,254)( 94,253)( 95,257)( 96,256)( 97,255)
( 98,259)( 99,258)(100,262)(101,261)(102,260)(103,269)(104,268)(105,272)
(106,271)(107,270)(108,264)(109,263)(110,267)(111,266)(112,265)(113,279)
(114,278)(115,282)(116,281)(117,280)(118,274)(119,273)(120,277)(121,276)
(122,275)(123,294)(124,293)(125,297)(126,296)(127,295)(128,299)(129,298)
(130,302)(131,301)(132,300)(133,284)(134,283)(135,287)(136,286)(137,285)
(138,289)(139,288)(140,292)(141,291)(142,290)(143,319)(144,318)(145,322)
(146,321)(147,320)(148,314)(149,313)(150,317)(151,316)(152,315)(153,309)
(154,308)(155,312)(156,311)(157,310)(158,304)(159,303)(160,307)(161,306)
(162,305);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope