Questions?
See the FAQ
or other info.

Polytope of Type {8,40,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,40,2}*1280b
if this polytope has a name.
Group : SmallGroup(1280,145174)
Rank : 4
Schlafli Type : {8,40,2}
Number of vertices, edges, etc : 8, 160, 40, 2
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,40,2}*640a, {8,20,2}*640b
   4-fold quotients : {4,20,2}*320, {2,40,2}*320
   5-fold quotients : {8,8,2}*256a
   8-fold quotients : {2,20,2}*160, {4,10,2}*160
   10-fold quotients : {4,8,2}*128a, {8,4,2}*128b
   16-fold quotients : {2,10,2}*80
   20-fold quotients : {4,4,2}*64, {2,8,2}*64
   32-fold quotients : {2,5,2}*40
   40-fold quotients : {2,4,2}*32, {4,2,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 81)(  2, 82)(  3, 83)(  4, 84)(  5, 85)(  6, 86)(  7, 87)(  8, 88)
(  9, 89)( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)
( 17, 97)( 18, 98)( 19, 99)( 20,100)( 21,106)( 22,107)( 23,108)( 24,109)
( 25,110)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,116)( 32,117)
( 33,118)( 34,119)( 35,120)( 36,111)( 37,112)( 38,113)( 39,114)( 40,115)
( 41,126)( 42,127)( 43,128)( 44,129)( 45,130)( 46,121)( 47,122)( 48,123)
( 49,124)( 50,125)( 51,136)( 52,137)( 53,138)( 54,139)( 55,140)( 56,131)
( 57,132)( 58,133)( 59,134)( 60,135)( 61,141)( 62,142)( 63,143)( 64,144)
( 65,145)( 66,146)( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)
( 73,153)( 74,154)( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)
(161,241)(162,242)(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)
(169,249)(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)
(177,257)(178,258)(179,259)(180,260)(181,266)(182,267)(183,268)(184,269)
(185,270)(186,261)(187,262)(188,263)(189,264)(190,265)(191,276)(192,277)
(193,278)(194,279)(195,280)(196,271)(197,272)(198,273)(199,274)(200,275)
(201,286)(202,287)(203,288)(204,289)(205,290)(206,281)(207,282)(208,283)
(209,284)(210,285)(211,296)(212,297)(213,298)(214,299)(215,300)(216,291)
(217,292)(218,293)(219,294)(220,295)(221,301)(222,302)(223,303)(224,304)
(225,305)(226,306)(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)
(233,313)(234,314)(235,315)(236,316)(237,317)(238,318)(239,319)(240,320);;
s1 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)( 33, 39)
( 34, 38)( 35, 37)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)( 46, 56)
( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 61, 76)( 62, 80)( 63, 79)( 64, 78)
( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81,101)( 82,105)
( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)
( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)( 98,119)
( 99,118)(100,117)(121,151)(122,155)(123,154)(124,153)(125,152)(126,156)
(127,160)(128,159)(129,158)(130,157)(131,141)(132,145)(133,144)(134,143)
(135,142)(136,146)(137,150)(138,149)(139,148)(140,147)(161,201)(162,205)
(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)
(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)(178,219)
(179,218)(180,217)(181,226)(182,230)(183,229)(184,228)(185,227)(186,221)
(187,225)(188,224)(189,223)(190,222)(191,236)(192,240)(193,239)(194,238)
(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,306)(242,310)
(243,309)(244,308)(245,307)(246,301)(247,305)(248,304)(249,303)(250,302)
(251,316)(252,320)(253,319)(254,318)(255,317)(256,311)(257,315)(258,314)
(259,313)(260,312)(261,286)(262,290)(263,289)(264,288)(265,287)(266,281)
(267,285)(268,284)(269,283)(270,282)(271,296)(272,300)(273,299)(274,298)
(275,297)(276,291)(277,295)(278,294)(279,293)(280,292);;
s2 := (  1,162)(  2,161)(  3,165)(  4,164)(  5,163)(  6,167)(  7,166)(  8,170)
(  9,169)( 10,168)( 11,172)( 12,171)( 13,175)( 14,174)( 15,173)( 16,177)
( 17,176)( 18,180)( 19,179)( 20,178)( 21,187)( 22,186)( 23,190)( 24,189)
( 25,188)( 26,182)( 27,181)( 28,185)( 29,184)( 30,183)( 31,197)( 32,196)
( 33,200)( 34,199)( 35,198)( 36,192)( 37,191)( 38,195)( 39,194)( 40,193)
( 41,212)( 42,211)( 43,215)( 44,214)( 45,213)( 46,217)( 47,216)( 48,220)
( 49,219)( 50,218)( 51,202)( 52,201)( 53,205)( 54,204)( 55,203)( 56,207)
( 57,206)( 58,210)( 59,209)( 60,208)( 61,237)( 62,236)( 63,240)( 64,239)
( 65,238)( 66,232)( 67,231)( 68,235)( 69,234)( 70,233)( 71,227)( 72,226)
( 73,230)( 74,229)( 75,228)( 76,222)( 77,221)( 78,225)( 79,224)( 80,223)
( 81,242)( 82,241)( 83,245)( 84,244)( 85,243)( 86,247)( 87,246)( 88,250)
( 89,249)( 90,248)( 91,252)( 92,251)( 93,255)( 94,254)( 95,253)( 96,257)
( 97,256)( 98,260)( 99,259)(100,258)(101,267)(102,266)(103,270)(104,269)
(105,268)(106,262)(107,261)(108,265)(109,264)(110,263)(111,277)(112,276)
(113,280)(114,279)(115,278)(116,272)(117,271)(118,275)(119,274)(120,273)
(121,292)(122,291)(123,295)(124,294)(125,293)(126,297)(127,296)(128,300)
(129,299)(130,298)(131,282)(132,281)(133,285)(134,284)(135,283)(136,287)
(137,286)(138,290)(139,289)(140,288)(141,317)(142,316)(143,320)(144,319)
(145,318)(146,312)(147,311)(148,315)(149,314)(150,313)(151,307)(152,306)
(153,310)(154,309)(155,308)(156,302)(157,301)(158,305)(159,304)(160,303);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(  1, 81)(  2, 82)(  3, 83)(  4, 84)(  5, 85)(  6, 86)(  7, 87)
(  8, 88)(  9, 89)( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)
( 16, 96)( 17, 97)( 18, 98)( 19, 99)( 20,100)( 21,106)( 22,107)( 23,108)
( 24,109)( 25,110)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,116)
( 32,117)( 33,118)( 34,119)( 35,120)( 36,111)( 37,112)( 38,113)( 39,114)
( 40,115)( 41,126)( 42,127)( 43,128)( 44,129)( 45,130)( 46,121)( 47,122)
( 48,123)( 49,124)( 50,125)( 51,136)( 52,137)( 53,138)( 54,139)( 55,140)
( 56,131)( 57,132)( 58,133)( 59,134)( 60,135)( 61,141)( 62,142)( 63,143)
( 64,144)( 65,145)( 66,146)( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)
( 72,152)( 73,153)( 74,154)( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)
( 80,160)(161,241)(162,242)(163,243)(164,244)(165,245)(166,246)(167,247)
(168,248)(169,249)(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)
(176,256)(177,257)(178,258)(179,259)(180,260)(181,266)(182,267)(183,268)
(184,269)(185,270)(186,261)(187,262)(188,263)(189,264)(190,265)(191,276)
(192,277)(193,278)(194,279)(195,280)(196,271)(197,272)(198,273)(199,274)
(200,275)(201,286)(202,287)(203,288)(204,289)(205,290)(206,281)(207,282)
(208,283)(209,284)(210,285)(211,296)(212,297)(213,298)(214,299)(215,300)
(216,291)(217,292)(218,293)(219,294)(220,295)(221,301)(222,302)(223,303)
(224,304)(225,305)(226,306)(227,307)(228,308)(229,309)(230,310)(231,311)
(232,312)(233,313)(234,314)(235,315)(236,316)(237,317)(238,318)(239,319)
(240,320);
s1 := Sym(322)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)
( 46, 56)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 61, 76)( 62, 80)( 63, 79)
( 64, 78)( 65, 77)( 66, 71)( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 81,101)
( 82,105)( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)
( 90,107)( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)
( 98,119)( 99,118)(100,117)(121,151)(122,155)(123,154)(124,153)(125,152)
(126,156)(127,160)(128,159)(129,158)(130,157)(131,141)(132,145)(133,144)
(134,143)(135,142)(136,146)(137,150)(138,149)(139,148)(140,147)(161,201)
(162,205)(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)
(170,207)(171,211)(172,215)(173,214)(174,213)(175,212)(176,216)(177,220)
(178,219)(179,218)(180,217)(181,226)(182,230)(183,229)(184,228)(185,227)
(186,221)(187,225)(188,224)(189,223)(190,222)(191,236)(192,240)(193,239)
(194,238)(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,306)
(242,310)(243,309)(244,308)(245,307)(246,301)(247,305)(248,304)(249,303)
(250,302)(251,316)(252,320)(253,319)(254,318)(255,317)(256,311)(257,315)
(258,314)(259,313)(260,312)(261,286)(262,290)(263,289)(264,288)(265,287)
(266,281)(267,285)(268,284)(269,283)(270,282)(271,296)(272,300)(273,299)
(274,298)(275,297)(276,291)(277,295)(278,294)(279,293)(280,292);
s2 := Sym(322)!(  1,162)(  2,161)(  3,165)(  4,164)(  5,163)(  6,167)(  7,166)
(  8,170)(  9,169)( 10,168)( 11,172)( 12,171)( 13,175)( 14,174)( 15,173)
( 16,177)( 17,176)( 18,180)( 19,179)( 20,178)( 21,187)( 22,186)( 23,190)
( 24,189)( 25,188)( 26,182)( 27,181)( 28,185)( 29,184)( 30,183)( 31,197)
( 32,196)( 33,200)( 34,199)( 35,198)( 36,192)( 37,191)( 38,195)( 39,194)
( 40,193)( 41,212)( 42,211)( 43,215)( 44,214)( 45,213)( 46,217)( 47,216)
( 48,220)( 49,219)( 50,218)( 51,202)( 52,201)( 53,205)( 54,204)( 55,203)
( 56,207)( 57,206)( 58,210)( 59,209)( 60,208)( 61,237)( 62,236)( 63,240)
( 64,239)( 65,238)( 66,232)( 67,231)( 68,235)( 69,234)( 70,233)( 71,227)
( 72,226)( 73,230)( 74,229)( 75,228)( 76,222)( 77,221)( 78,225)( 79,224)
( 80,223)( 81,242)( 82,241)( 83,245)( 84,244)( 85,243)( 86,247)( 87,246)
( 88,250)( 89,249)( 90,248)( 91,252)( 92,251)( 93,255)( 94,254)( 95,253)
( 96,257)( 97,256)( 98,260)( 99,259)(100,258)(101,267)(102,266)(103,270)
(104,269)(105,268)(106,262)(107,261)(108,265)(109,264)(110,263)(111,277)
(112,276)(113,280)(114,279)(115,278)(116,272)(117,271)(118,275)(119,274)
(120,273)(121,292)(122,291)(123,295)(124,294)(125,293)(126,297)(127,296)
(128,300)(129,299)(130,298)(131,282)(132,281)(133,285)(134,284)(135,283)
(136,287)(137,286)(138,290)(139,289)(140,288)(141,317)(142,316)(143,320)
(144,319)(145,318)(146,312)(147,311)(148,315)(149,314)(150,313)(151,307)
(152,306)(153,310)(154,309)(155,308)(156,302)(157,301)(158,305)(159,304)
(160,303);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope