Questions?
See the FAQ
or other info.

Polytope of Type {6,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36}*1296k
if this polytope has a name.
Group : SmallGroup(1296,1785)
Rank : 3
Schlafli Type : {6,36}
Number of vertices, edges, etc : 18, 324, 108
Order of s0s1s2 : 9
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,36}*432c, {6,12}*432d
   4-fold quotients : {6,18}*324a
   9-fold quotients : {6,12}*144d
   12-fold quotients : {6,6}*108
   27-fold quotients : {6,4}*48b
   54-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 39, 40)
( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 51, 52)( 53, 57)( 54, 58)( 55, 60)
( 56, 59)( 63, 64)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 75, 76)( 77, 81)
( 78, 82)( 79, 84)( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)
( 99,100)(101,105)(102,106)(103,108)(104,107);;
s1 := (  2,  4)(  6,  8)( 10, 12)( 13, 25)( 14, 28)( 15, 27)( 16, 26)( 17, 29)
( 18, 32)( 19, 31)( 20, 30)( 21, 33)( 22, 36)( 23, 35)( 24, 34)( 37,105)
( 38,108)( 39,107)( 40,106)( 41, 97)( 42,100)( 43, 99)( 44, 98)( 45,101)
( 46,104)( 47,103)( 48,102)( 49, 93)( 50, 96)( 51, 95)( 52, 94)( 53, 85)
( 54, 88)( 55, 87)( 56, 86)( 57, 89)( 58, 92)( 59, 91)( 60, 90)( 61, 81)
( 62, 84)( 63, 83)( 64, 82)( 65, 73)( 66, 76)( 67, 75)( 68, 74)( 69, 77)
( 70, 80)( 71, 79)( 72, 78);;
s2 := (  1, 38)(  2, 37)(  3, 40)(  4, 39)(  5, 46)(  6, 45)(  7, 48)(  8, 47)
(  9, 42)( 10, 41)( 11, 44)( 12, 43)( 13, 62)( 14, 61)( 15, 64)( 16, 63)
( 17, 70)( 18, 69)( 19, 72)( 20, 71)( 21, 66)( 22, 65)( 23, 68)( 24, 67)
( 25, 50)( 26, 49)( 27, 52)( 28, 51)( 29, 58)( 30, 57)( 31, 60)( 32, 59)
( 33, 54)( 34, 53)( 35, 56)( 36, 55)( 73, 98)( 74, 97)( 75,100)( 76, 99)
( 77,106)( 78,105)( 79,108)( 80,107)( 81,102)( 82,101)( 83,104)( 84,103)
( 85, 86)( 87, 88)( 89, 94)( 90, 93)( 91, 96)( 92, 95);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 51, 52)( 53, 57)( 54, 58)
( 55, 60)( 56, 59)( 63, 64)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 75, 76)
( 77, 81)( 78, 82)( 79, 84)( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)
( 92, 95)( 99,100)(101,105)(102,106)(103,108)(104,107);
s1 := Sym(108)!(  2,  4)(  6,  8)( 10, 12)( 13, 25)( 14, 28)( 15, 27)( 16, 26)
( 17, 29)( 18, 32)( 19, 31)( 20, 30)( 21, 33)( 22, 36)( 23, 35)( 24, 34)
( 37,105)( 38,108)( 39,107)( 40,106)( 41, 97)( 42,100)( 43, 99)( 44, 98)
( 45,101)( 46,104)( 47,103)( 48,102)( 49, 93)( 50, 96)( 51, 95)( 52, 94)
( 53, 85)( 54, 88)( 55, 87)( 56, 86)( 57, 89)( 58, 92)( 59, 91)( 60, 90)
( 61, 81)( 62, 84)( 63, 83)( 64, 82)( 65, 73)( 66, 76)( 67, 75)( 68, 74)
( 69, 77)( 70, 80)( 71, 79)( 72, 78);
s2 := Sym(108)!(  1, 38)(  2, 37)(  3, 40)(  4, 39)(  5, 46)(  6, 45)(  7, 48)
(  8, 47)(  9, 42)( 10, 41)( 11, 44)( 12, 43)( 13, 62)( 14, 61)( 15, 64)
( 16, 63)( 17, 70)( 18, 69)( 19, 72)( 20, 71)( 21, 66)( 22, 65)( 23, 68)
( 24, 67)( 25, 50)( 26, 49)( 27, 52)( 28, 51)( 29, 58)( 30, 57)( 31, 60)
( 32, 59)( 33, 54)( 34, 53)( 35, 56)( 36, 55)( 73, 98)( 74, 97)( 75,100)
( 76, 99)( 77,106)( 78,105)( 79,108)( 80,107)( 81,102)( 82,101)( 83,104)
( 84,103)( 85, 86)( 87, 88)( 89, 94)( 90, 93)( 91, 96)( 92, 95);
poly := sub<Sym(108)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2, 
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope