Questions?
See the FAQ
or other info.

Polytope of Type {3,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,18}*1296a
if this polytope has a name.
Group : SmallGroup(1296,1786)
Rank : 3
Schlafli Type : {3,18}
Number of vertices, edges, etc : 36, 324, 216
Order of s0s1s2 : 12
Order of s0s1s2s1 : 18
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6}*432
   4-fold quotients : {3,18}*324
   9-fold quotients : {3,6}*144
   12-fold quotients : {3,6}*108
   27-fold quotients : {3,6}*48
   36-fold quotients : {3,6}*36
   54-fold quotients : {3,3}*24
   108-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 21)( 14, 22)( 15, 24)
( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 37, 73)
( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)( 45, 77)
( 46, 78)( 47, 80)( 48, 79)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,101)
( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69,105)
( 70,106)( 71,108)( 72,107)(109,225)(110,226)(111,228)(112,227)(113,221)
(114,222)(115,224)(116,223)(117,217)(118,218)(119,220)(120,219)(121,233)
(122,234)(123,236)(124,235)(125,229)(126,230)(127,232)(128,231)(129,237)
(130,238)(131,240)(132,239)(133,241)(134,242)(135,244)(136,243)(137,249)
(138,250)(139,252)(140,251)(141,245)(142,246)(143,248)(144,247)(145,297)
(146,298)(147,300)(148,299)(149,293)(150,294)(151,296)(152,295)(153,289)
(154,290)(155,292)(156,291)(157,305)(158,306)(159,308)(160,307)(161,301)
(162,302)(163,304)(164,303)(165,309)(166,310)(167,312)(168,311)(169,313)
(170,314)(171,316)(172,315)(173,321)(174,322)(175,324)(176,323)(177,317)
(178,318)(179,320)(180,319)(181,261)(182,262)(183,264)(184,263)(185,257)
(186,258)(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)(193,269)
(194,270)(195,272)(196,271)(197,265)(198,266)(199,268)(200,267)(201,273)
(202,274)(203,276)(204,275)(205,277)(206,278)(207,280)(208,279)(209,285)
(210,286)(211,288)(212,287)(213,281)(214,282)(215,284)(216,283);;
s1 := (  1,265)(  2,267)(  3,266)(  4,268)(  5,273)(  6,275)(  7,274)(  8,276)
(  9,269)( 10,271)( 11,270)( 12,272)( 13,277)( 14,279)( 15,278)( 16,280)
( 17,285)( 18,287)( 19,286)( 20,288)( 21,281)( 22,283)( 23,282)( 24,284)
( 25,253)( 26,255)( 27,254)( 28,256)( 29,261)( 30,263)( 31,262)( 32,264)
( 33,257)( 34,259)( 35,258)( 36,260)( 37,241)( 38,243)( 39,242)( 40,244)
( 41,249)( 42,251)( 43,250)( 44,252)( 45,245)( 46,247)( 47,246)( 48,248)
( 49,217)( 50,219)( 51,218)( 52,220)( 53,225)( 54,227)( 55,226)( 56,228)
( 57,221)( 58,223)( 59,222)( 60,224)( 61,229)( 62,231)( 63,230)( 64,232)
( 65,237)( 66,239)( 67,238)( 68,240)( 69,233)( 70,235)( 71,234)( 72,236)
( 73,297)( 74,299)( 75,298)( 76,300)( 77,293)( 78,295)( 79,294)( 80,296)
( 81,289)( 82,291)( 83,290)( 84,292)( 85,309)( 86,311)( 87,310)( 88,312)
( 89,305)( 90,307)( 91,306)( 92,308)( 93,301)( 94,303)( 95,302)( 96,304)
( 97,321)( 98,323)( 99,322)(100,324)(101,317)(102,319)(103,318)(104,320)
(105,313)(106,315)(107,314)(108,316)(109,157)(110,159)(111,158)(112,160)
(113,165)(114,167)(115,166)(116,168)(117,161)(118,163)(119,162)(120,164)
(121,169)(122,171)(123,170)(124,172)(125,177)(126,179)(127,178)(128,180)
(129,173)(130,175)(131,174)(132,176)(133,145)(134,147)(135,146)(136,148)
(137,153)(138,155)(139,154)(140,156)(141,149)(142,151)(143,150)(144,152)
(181,189)(182,191)(183,190)(184,192)(186,187)(193,201)(194,203)(195,202)
(196,204)(198,199)(205,213)(206,215)(207,214)(208,216)(210,211);;
s2 := (  1,  2)(  5, 10)(  6,  9)(  7, 11)(  8, 12)( 13, 26)( 14, 25)( 15, 27)
( 16, 28)( 17, 34)( 18, 33)( 19, 35)( 20, 36)( 21, 30)( 22, 29)( 23, 31)
( 24, 32)( 37, 38)( 41, 46)( 42, 45)( 43, 47)( 44, 48)( 49, 62)( 50, 61)
( 51, 63)( 52, 64)( 53, 70)( 54, 69)( 55, 71)( 56, 72)( 57, 66)( 58, 65)
( 59, 67)( 60, 68)( 73, 74)( 77, 82)( 78, 81)( 79, 83)( 80, 84)( 85, 98)
( 86, 97)( 87, 99)( 88,100)( 89,106)( 90,105)( 91,107)( 92,108)( 93,102)
( 94,101)( 95,103)( 96,104)(109,226)(110,225)(111,227)(112,228)(113,222)
(114,221)(115,223)(116,224)(117,218)(118,217)(119,219)(120,220)(121,250)
(122,249)(123,251)(124,252)(125,246)(126,245)(127,247)(128,248)(129,242)
(130,241)(131,243)(132,244)(133,238)(134,237)(135,239)(136,240)(137,234)
(138,233)(139,235)(140,236)(141,230)(142,229)(143,231)(144,232)(145,262)
(146,261)(147,263)(148,264)(149,258)(150,257)(151,259)(152,260)(153,254)
(154,253)(155,255)(156,256)(157,286)(158,285)(159,287)(160,288)(161,282)
(162,281)(163,283)(164,284)(165,278)(166,277)(167,279)(168,280)(169,274)
(170,273)(171,275)(172,276)(173,270)(174,269)(175,271)(176,272)(177,266)
(178,265)(179,267)(180,268)(181,298)(182,297)(183,299)(184,300)(185,294)
(186,293)(187,295)(188,296)(189,290)(190,289)(191,291)(192,292)(193,322)
(194,321)(195,323)(196,324)(197,318)(198,317)(199,319)(200,320)(201,314)
(202,313)(203,315)(204,316)(205,310)(206,309)(207,311)(208,312)(209,306)
(210,305)(211,307)(212,308)(213,302)(214,301)(215,303)(216,304);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(324)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 21)( 14, 22)
( 15, 24)( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)
( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)
( 45, 77)( 46, 78)( 47, 80)( 48, 79)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,101)( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)
( 69,105)( 70,106)( 71,108)( 72,107)(109,225)(110,226)(111,228)(112,227)
(113,221)(114,222)(115,224)(116,223)(117,217)(118,218)(119,220)(120,219)
(121,233)(122,234)(123,236)(124,235)(125,229)(126,230)(127,232)(128,231)
(129,237)(130,238)(131,240)(132,239)(133,241)(134,242)(135,244)(136,243)
(137,249)(138,250)(139,252)(140,251)(141,245)(142,246)(143,248)(144,247)
(145,297)(146,298)(147,300)(148,299)(149,293)(150,294)(151,296)(152,295)
(153,289)(154,290)(155,292)(156,291)(157,305)(158,306)(159,308)(160,307)
(161,301)(162,302)(163,304)(164,303)(165,309)(166,310)(167,312)(168,311)
(169,313)(170,314)(171,316)(172,315)(173,321)(174,322)(175,324)(176,323)
(177,317)(178,318)(179,320)(180,319)(181,261)(182,262)(183,264)(184,263)
(185,257)(186,258)(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)
(193,269)(194,270)(195,272)(196,271)(197,265)(198,266)(199,268)(200,267)
(201,273)(202,274)(203,276)(204,275)(205,277)(206,278)(207,280)(208,279)
(209,285)(210,286)(211,288)(212,287)(213,281)(214,282)(215,284)(216,283);
s1 := Sym(324)!(  1,265)(  2,267)(  3,266)(  4,268)(  5,273)(  6,275)(  7,274)
(  8,276)(  9,269)( 10,271)( 11,270)( 12,272)( 13,277)( 14,279)( 15,278)
( 16,280)( 17,285)( 18,287)( 19,286)( 20,288)( 21,281)( 22,283)( 23,282)
( 24,284)( 25,253)( 26,255)( 27,254)( 28,256)( 29,261)( 30,263)( 31,262)
( 32,264)( 33,257)( 34,259)( 35,258)( 36,260)( 37,241)( 38,243)( 39,242)
( 40,244)( 41,249)( 42,251)( 43,250)( 44,252)( 45,245)( 46,247)( 47,246)
( 48,248)( 49,217)( 50,219)( 51,218)( 52,220)( 53,225)( 54,227)( 55,226)
( 56,228)( 57,221)( 58,223)( 59,222)( 60,224)( 61,229)( 62,231)( 63,230)
( 64,232)( 65,237)( 66,239)( 67,238)( 68,240)( 69,233)( 70,235)( 71,234)
( 72,236)( 73,297)( 74,299)( 75,298)( 76,300)( 77,293)( 78,295)( 79,294)
( 80,296)( 81,289)( 82,291)( 83,290)( 84,292)( 85,309)( 86,311)( 87,310)
( 88,312)( 89,305)( 90,307)( 91,306)( 92,308)( 93,301)( 94,303)( 95,302)
( 96,304)( 97,321)( 98,323)( 99,322)(100,324)(101,317)(102,319)(103,318)
(104,320)(105,313)(106,315)(107,314)(108,316)(109,157)(110,159)(111,158)
(112,160)(113,165)(114,167)(115,166)(116,168)(117,161)(118,163)(119,162)
(120,164)(121,169)(122,171)(123,170)(124,172)(125,177)(126,179)(127,178)
(128,180)(129,173)(130,175)(131,174)(132,176)(133,145)(134,147)(135,146)
(136,148)(137,153)(138,155)(139,154)(140,156)(141,149)(142,151)(143,150)
(144,152)(181,189)(182,191)(183,190)(184,192)(186,187)(193,201)(194,203)
(195,202)(196,204)(198,199)(205,213)(206,215)(207,214)(208,216)(210,211);
s2 := Sym(324)!(  1,  2)(  5, 10)(  6,  9)(  7, 11)(  8, 12)( 13, 26)( 14, 25)
( 15, 27)( 16, 28)( 17, 34)( 18, 33)( 19, 35)( 20, 36)( 21, 30)( 22, 29)
( 23, 31)( 24, 32)( 37, 38)( 41, 46)( 42, 45)( 43, 47)( 44, 48)( 49, 62)
( 50, 61)( 51, 63)( 52, 64)( 53, 70)( 54, 69)( 55, 71)( 56, 72)( 57, 66)
( 58, 65)( 59, 67)( 60, 68)( 73, 74)( 77, 82)( 78, 81)( 79, 83)( 80, 84)
( 85, 98)( 86, 97)( 87, 99)( 88,100)( 89,106)( 90,105)( 91,107)( 92,108)
( 93,102)( 94,101)( 95,103)( 96,104)(109,226)(110,225)(111,227)(112,228)
(113,222)(114,221)(115,223)(116,224)(117,218)(118,217)(119,219)(120,220)
(121,250)(122,249)(123,251)(124,252)(125,246)(126,245)(127,247)(128,248)
(129,242)(130,241)(131,243)(132,244)(133,238)(134,237)(135,239)(136,240)
(137,234)(138,233)(139,235)(140,236)(141,230)(142,229)(143,231)(144,232)
(145,262)(146,261)(147,263)(148,264)(149,258)(150,257)(151,259)(152,260)
(153,254)(154,253)(155,255)(156,256)(157,286)(158,285)(159,287)(160,288)
(161,282)(162,281)(163,283)(164,284)(165,278)(166,277)(167,279)(168,280)
(169,274)(170,273)(171,275)(172,276)(173,270)(174,269)(175,271)(176,272)
(177,266)(178,265)(179,267)(180,268)(181,298)(182,297)(183,299)(184,300)
(185,294)(186,293)(187,295)(188,296)(189,290)(190,289)(191,291)(192,292)
(193,322)(194,321)(195,323)(196,324)(197,318)(198,317)(199,319)(200,320)
(201,314)(202,313)(203,315)(204,316)(205,310)(206,309)(207,311)(208,312)
(209,306)(210,305)(211,307)(212,308)(213,302)(214,301)(215,303)(216,304);
poly := sub<Sym(324)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 
References : None.
to this polytope