Questions?
See the FAQ
or other info.

Polytope of Type {9,18,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,18,2,2}*1296
if this polytope has a name.
Group : SmallGroup(1296,1857)
Rank : 5
Schlafli Type : {9,18,2,2}
Number of vertices, edges, etc : 9, 81, 18, 2, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {9,6,2,2}*432
   9-fold quotients : {9,2,2,2}*144, {3,6,2,2}*144
   27-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,20)(11,19)(12,21)(13,26)(14,25)(15,27)
(16,23)(17,22)(18,24)(28,58)(29,60)(30,59)(31,55)(32,57)(33,56)(34,61)(35,63)
(36,62)(37,77)(38,76)(39,78)(40,74)(41,73)(42,75)(43,80)(44,79)(45,81)(46,68)
(47,67)(48,69)(49,65)(50,64)(51,66)(52,71)(53,70)(54,72);;
s1 := ( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)(10,28)
(11,30)(12,29)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,47)(20,46)(21,48)
(22,53)(23,52)(24,54)(25,50)(26,49)(27,51)(55,67)(56,69)(57,68)(58,64)(59,66)
(60,65)(61,70)(62,72)(63,71)(73,77)(74,76)(75,78)(79,80);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(28,58)
(29,59)(30,60)(31,55)(32,56)(33,57)(34,61)(35,62)(36,63)(37,67)(38,68)(39,69)
(40,64)(41,65)(42,66)(43,70)(44,71)(45,72)(46,76)(47,77)(48,78)(49,73)(50,74)
(51,75)(52,79)(53,80)(54,81);;
s3 := (82,83);;
s4 := (84,85);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(85)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,20)(11,19)(12,21)(13,26)(14,25)
(15,27)(16,23)(17,22)(18,24)(28,58)(29,60)(30,59)(31,55)(32,57)(33,56)(34,61)
(35,63)(36,62)(37,77)(38,76)(39,78)(40,74)(41,73)(42,75)(43,80)(44,79)(45,81)
(46,68)(47,67)(48,69)(49,65)(50,64)(51,66)(52,71)(53,70)(54,72);
s1 := Sym(85)!( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)
(10,28)(11,30)(12,29)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,47)(20,46)
(21,48)(22,53)(23,52)(24,54)(25,50)(26,49)(27,51)(55,67)(56,69)(57,68)(58,64)
(59,66)(60,65)(61,70)(62,72)(63,71)(73,77)(74,76)(75,78)(79,80);
s2 := Sym(85)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(28,58)(29,59)(30,60)(31,55)(32,56)(33,57)(34,61)(35,62)(36,63)(37,67)(38,68)
(39,69)(40,64)(41,65)(42,66)(43,70)(44,71)(45,72)(46,76)(47,77)(48,78)(49,73)
(50,74)(51,75)(52,79)(53,80)(54,81);
s3 := Sym(85)!(82,83);
s4 := Sym(85)!(84,85);
poly := sub<Sym(85)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope