Questions?
See the FAQ
or other info.

Polytope of Type {6,18,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18,2}*1296c
if this polytope has a name.
Group : SmallGroup(1296,1860)
Rank : 4
Schlafli Type : {6,18,2}
Number of vertices, edges, etc : 18, 162, 54, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,9,2}*648c
   3-fold quotients : {6,6,2}*432a
   6-fold quotients : {6,3,2}*216
   9-fold quotients : {6,6,2}*144b
   18-fold quotients : {6,3,2}*72
   27-fold quotients : {2,6,2}*48
   54-fold quotients : {2,3,2}*24
   81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  8)(  5,  9)(  6,  7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 85, 89)( 86, 90)( 87, 88)( 91,100)
( 92,101)( 93,102)( 94,107)( 95,108)( 96,106)( 97,105)( 98,103)( 99,104)
(112,116)(113,117)(114,115)(118,127)(119,128)(120,129)(121,134)(122,135)
(123,133)(124,132)(125,130)(126,131)(139,143)(140,144)(141,142)(145,154)
(146,155)(147,156)(148,161)(149,162)(150,160)(151,159)(152,157)(153,158);;
s1 := (  1, 10)(  2, 12)(  3, 11)(  4, 13)(  5, 15)(  6, 14)(  7, 16)(  8, 18)
(  9, 17)( 20, 21)( 23, 24)( 26, 27)( 28, 64)( 29, 66)( 30, 65)( 31, 67)
( 32, 69)( 33, 68)( 34, 70)( 35, 72)( 36, 71)( 37, 55)( 38, 57)( 39, 56)
( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 46, 73)( 47, 75)
( 48, 74)( 49, 76)( 50, 78)( 51, 77)( 52, 79)( 53, 81)( 54, 80)( 82, 91)
( 83, 93)( 84, 92)( 85, 94)( 86, 96)( 87, 95)( 88, 97)( 89, 99)( 90, 98)
(101,102)(104,105)(107,108)(109,145)(110,147)(111,146)(112,148)(113,150)
(114,149)(115,151)(116,153)(117,152)(118,136)(119,138)(120,137)(121,139)
(122,141)(123,140)(124,142)(125,144)(126,143)(127,154)(128,156)(129,155)
(130,157)(131,159)(132,158)(133,160)(134,162)(135,161);;
s2 := (  1,109)(  2,111)(  3,110)(  4,114)(  5,113)(  6,112)(  7,116)(  8,115)
(  9,117)( 10,134)( 11,133)( 12,135)( 13,127)( 14,129)( 15,128)( 16,132)
( 17,131)( 18,130)( 19,121)( 20,123)( 21,122)( 22,126)( 23,125)( 24,124)
( 25,119)( 26,118)( 27,120)( 28, 82)( 29, 84)( 30, 83)( 31, 87)( 32, 86)
( 33, 85)( 34, 89)( 35, 88)( 36, 90)( 37,107)( 38,106)( 39,108)( 40,100)
( 41,102)( 42,101)( 43,105)( 44,104)( 45,103)( 46, 94)( 47, 96)( 48, 95)
( 49, 99)( 50, 98)( 51, 97)( 52, 92)( 53, 91)( 54, 93)( 55,136)( 56,138)
( 57,137)( 58,141)( 59,140)( 60,139)( 61,143)( 62,142)( 63,144)( 64,161)
( 65,160)( 66,162)( 67,154)( 68,156)( 69,155)( 70,159)( 71,158)( 72,157)
( 73,148)( 74,150)( 75,149)( 76,153)( 77,152)( 78,151)( 79,146)( 80,145)
( 81,147);;
s3 := (163,164);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(164)!(  4,  8)(  5,  9)(  6,  7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 85, 89)( 86, 90)( 87, 88)
( 91,100)( 92,101)( 93,102)( 94,107)( 95,108)( 96,106)( 97,105)( 98,103)
( 99,104)(112,116)(113,117)(114,115)(118,127)(119,128)(120,129)(121,134)
(122,135)(123,133)(124,132)(125,130)(126,131)(139,143)(140,144)(141,142)
(145,154)(146,155)(147,156)(148,161)(149,162)(150,160)(151,159)(152,157)
(153,158);
s1 := Sym(164)!(  1, 10)(  2, 12)(  3, 11)(  4, 13)(  5, 15)(  6, 14)(  7, 16)
(  8, 18)(  9, 17)( 20, 21)( 23, 24)( 26, 27)( 28, 64)( 29, 66)( 30, 65)
( 31, 67)( 32, 69)( 33, 68)( 34, 70)( 35, 72)( 36, 71)( 37, 55)( 38, 57)
( 39, 56)( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 46, 73)
( 47, 75)( 48, 74)( 49, 76)( 50, 78)( 51, 77)( 52, 79)( 53, 81)( 54, 80)
( 82, 91)( 83, 93)( 84, 92)( 85, 94)( 86, 96)( 87, 95)( 88, 97)( 89, 99)
( 90, 98)(101,102)(104,105)(107,108)(109,145)(110,147)(111,146)(112,148)
(113,150)(114,149)(115,151)(116,153)(117,152)(118,136)(119,138)(120,137)
(121,139)(122,141)(123,140)(124,142)(125,144)(126,143)(127,154)(128,156)
(129,155)(130,157)(131,159)(132,158)(133,160)(134,162)(135,161);
s2 := Sym(164)!(  1,109)(  2,111)(  3,110)(  4,114)(  5,113)(  6,112)(  7,116)
(  8,115)(  9,117)( 10,134)( 11,133)( 12,135)( 13,127)( 14,129)( 15,128)
( 16,132)( 17,131)( 18,130)( 19,121)( 20,123)( 21,122)( 22,126)( 23,125)
( 24,124)( 25,119)( 26,118)( 27,120)( 28, 82)( 29, 84)( 30, 83)( 31, 87)
( 32, 86)( 33, 85)( 34, 89)( 35, 88)( 36, 90)( 37,107)( 38,106)( 39,108)
( 40,100)( 41,102)( 42,101)( 43,105)( 44,104)( 45,103)( 46, 94)( 47, 96)
( 48, 95)( 49, 99)( 50, 98)( 51, 97)( 52, 92)( 53, 91)( 54, 93)( 55,136)
( 56,138)( 57,137)( 58,141)( 59,140)( 60,139)( 61,143)( 62,142)( 63,144)
( 64,161)( 65,160)( 66,162)( 67,154)( 68,156)( 69,155)( 70,159)( 71,158)
( 72,157)( 73,148)( 74,150)( 75,149)( 76,153)( 77,152)( 78,151)( 79,146)
( 80,145)( 81,147);
s3 := Sym(164)!(163,164);
poly := sub<Sym(164)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope