Questions?
See the FAQ
or other info.

Polytope of Type {18,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,4,6}*1296
if this polytope has a name.
Group : SmallGroup(1296,2908)
Rank : 4
Schlafli Type : {18,4,6}
Number of vertices, edges, etc : 18, 54, 18, 9
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,4,6}*432b
   9-fold quotients : {2,4,6}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 8)( 5, 7)( 6, 9)(11,12)(13,17)(14,16)(15,18)(20,21)(22,26)
(23,25)(24,27)(29,30)(31,35)(32,34)(33,36)(38,39)(40,44)(41,43)(42,45)(47,48)
(49,53)(50,52)(51,54)(56,57)(58,62)(59,61)(60,63)(65,66)(67,71)(68,70)(69,72)
(74,75)(76,80)(77,79)(78,81);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,31)(11,33)(12,32)(13,28)(14,30)(15,29)
(16,35)(17,34)(18,36)(19,58)(20,60)(21,59)(22,55)(23,57)(24,56)(25,62)(26,61)
(27,63)(37,40)(38,42)(39,41)(43,44)(46,67)(47,69)(48,68)(49,64)(50,66)(51,65)
(52,71)(53,70)(54,72)(73,76)(74,78)(75,77)(79,80);;
s2 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
s3 := ( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,28)
(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,64)(56,65)(57,66)(58,67)(59,68)
(60,69)(61,70)(62,71)(63,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 8)( 5, 7)( 6, 9)(11,12)(13,17)(14,16)(15,18)(20,21)
(22,26)(23,25)(24,27)(29,30)(31,35)(32,34)(33,36)(38,39)(40,44)(41,43)(42,45)
(47,48)(49,53)(50,52)(51,54)(56,57)(58,62)(59,61)(60,63)(65,66)(67,71)(68,70)
(69,72)(74,75)(76,80)(77,79)(78,81);
s1 := Sym(81)!( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,31)(11,33)(12,32)(13,28)(14,30)
(15,29)(16,35)(17,34)(18,36)(19,58)(20,60)(21,59)(22,55)(23,57)(24,56)(25,62)
(26,61)(27,63)(37,40)(38,42)(39,41)(43,44)(46,67)(47,69)(48,68)(49,64)(50,66)
(51,65)(52,71)(53,70)(54,72)(73,76)(74,78)(75,77)(79,80);
s2 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
s3 := Sym(81)!( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)
(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,64)(56,65)(57,66)(58,67)
(59,68)(60,69)(61,70)(62,71)(63,72);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope