Questions?
See the FAQ
or other info.

Polytope of Type {2,18,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,6}*1296i
if this polytope has a name.
Group : SmallGroup(1296,2984)
Rank : 4
Schlafli Type : {2,18,6}
Number of vertices, edges, etc : 2, 54, 162, 18
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,18,6}*432a, {2,18,6}*432b, {2,6,6}*432d
   6-fold quotients : {2,9,6}*216
   9-fold quotients : {2,18,2}*144, {2,6,6}*144a, {2,6,6}*144b, {2,6,6}*144c
   18-fold quotients : {2,9,2}*72, {2,3,6}*72, {2,6,3}*72
   27-fold quotients : {2,2,6}*48, {2,6,2}*48
   54-fold quotients : {2,2,3}*24, {2,3,2}*24
   81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19)(22,23)(24,27)
(25,29)(26,28)(30,59)(31,58)(32,57)(33,65)(34,64)(35,63)(36,62)(37,61)(38,60)
(39,68)(40,67)(41,66)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,77)(49,76)
(50,75)(51,83)(52,82)(53,81)(54,80)(55,79)(56,78);;
s2 := ( 3,33)( 4,35)( 5,34)( 6,30)( 7,32)( 8,31)( 9,36)(10,38)(11,37)(12,51)
(13,53)(14,52)(15,48)(16,50)(17,49)(18,54)(19,56)(20,55)(21,42)(22,44)(23,43)
(24,39)(25,41)(26,40)(27,45)(28,47)(29,46)(57,62)(58,61)(59,60)(63,65)(66,80)
(67,79)(68,78)(69,77)(70,76)(71,75)(72,83)(73,82)(74,81);;
s3 := ( 3,12)( 4,13)( 5,14)( 6,18)( 7,19)( 8,20)( 9,15)(10,16)(11,17)(24,27)
(25,28)(26,29)(30,39)(31,40)(32,41)(33,45)(34,46)(35,47)(36,42)(37,43)(38,44)
(51,54)(52,55)(53,56)(57,66)(58,67)(59,68)(60,72)(61,73)(62,74)(63,69)(64,70)
(65,71)(78,81)(79,82)(80,83);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(83)!(1,2);
s1 := Sym(83)!( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19)(22,23)
(24,27)(25,29)(26,28)(30,59)(31,58)(32,57)(33,65)(34,64)(35,63)(36,62)(37,61)
(38,60)(39,68)(40,67)(41,66)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,77)
(49,76)(50,75)(51,83)(52,82)(53,81)(54,80)(55,79)(56,78);
s2 := Sym(83)!( 3,33)( 4,35)( 5,34)( 6,30)( 7,32)( 8,31)( 9,36)(10,38)(11,37)
(12,51)(13,53)(14,52)(15,48)(16,50)(17,49)(18,54)(19,56)(20,55)(21,42)(22,44)
(23,43)(24,39)(25,41)(26,40)(27,45)(28,47)(29,46)(57,62)(58,61)(59,60)(63,65)
(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,83)(73,82)(74,81);
s3 := Sym(83)!( 3,12)( 4,13)( 5,14)( 6,18)( 7,19)( 8,20)( 9,15)(10,16)(11,17)
(24,27)(25,28)(26,29)(30,39)(31,40)(32,41)(33,45)(34,46)(35,47)(36,42)(37,43)
(38,44)(51,54)(52,55)(53,56)(57,66)(58,67)(59,68)(60,72)(61,73)(62,74)(63,69)
(64,70)(65,71)(78,81)(79,82)(80,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope