Questions?
See the FAQ
or other info.

# Polytope of Type {3,2,2,6,9}

Atlas Canonical Name : {3,2,2,6,9}*1296
if this polytope has a name.
Group : SmallGroup(1296,2984)
Rank : 6
Schlafli Type : {3,2,2,6,9}
Number of vertices, edges, etc : 3, 3, 2, 6, 27, 9
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,2,2,9}*432, {3,2,2,6,3}*432
9-fold quotients : {3,2,2,2,3}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(29,30)(31,32);;
s4 := ( 6, 9)( 7,15)( 8,12)(11,21)(13,16)(14,18)(17,27)(19,22)(20,24)(23,31)
(25,28)(26,29)(30,32);;
s5 := ( 6, 7)( 8,11)( 9,13)(10,12)(14,17)(15,19)(16,18)(20,23)(21,25)(22,24)
(27,30)(28,29)(31,32);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(32)!(2,3);
s1 := Sym(32)!(1,2);
s2 := Sym(32)!(4,5);
s3 := Sym(32)!( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(29,30)(31,32);
s4 := Sym(32)!( 6, 9)( 7,15)( 8,12)(11,21)(13,16)(14,18)(17,27)(19,22)(20,24)
(23,31)(25,28)(26,29)(30,32);
s5 := Sym(32)!( 6, 7)( 8,11)( 9,13)(10,12)(14,17)(15,19)(16,18)(20,23)(21,25)
(22,24)(27,30)(28,29)(31,32);
poly := sub<Sym(32)|s0,s1,s2,s3,s4,s5>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;

```

to this polytope