Questions?
See the FAQ
or other info.

# Polytope of Type {2,3,6,3,6}

Atlas Canonical Name : {2,3,6,3,6}*1296
if this polytope has a name.
Group : SmallGroup(1296,2985)
Rank : 6
Schlafli Type : {2,3,6,3,6}
Number of vertices, edges, etc : 2, 3, 9, 9, 9, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,3,6,3,2}*432, {2,3,2,3,6}*432
9-fold quotients : {2,3,2,3,2}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29);;
s2 := ( 4, 5)( 7, 8)(10,11)(12,14)(15,17)(18,20)(21,22)(24,25)(27,28);;
s3 := ( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16)(22,23)
(24,27)(25,29)(26,28);;
s4 := ( 3, 6)( 4, 8)( 5, 7)(10,11)(12,24)(13,26)(14,25)(15,21)(16,23)(17,22)
(18,27)(19,29)(20,28);;
s5 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s5*s3*s4*s5*s4*s5*s3*s4*s5*s4 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29);
s2 := Sym(29)!( 4, 5)( 7, 8)(10,11)(12,14)(15,17)(18,20)(21,22)(24,25)(27,28);
s3 := Sym(29)!( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16)
(22,23)(24,27)(25,29)(26,28);
s4 := Sym(29)!( 3, 6)( 4, 8)( 5, 7)(10,11)(12,24)(13,26)(14,25)(15,21)(16,23)
(17,22)(18,27)(19,29)(20,28);
s5 := Sym(29)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4,s5>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s5*s3*s4*s5*s4*s5*s3*s4*s5*s4 >;

```

to this polytope