Questions?
See the FAQ
or other info.

# Polytope of Type {2,9,3}

Atlas Canonical Name : {2,9,3}*1296
if this polytope has a name.
Group : SmallGroup(1296,3492)
Rank : 4
Schlafli Type : {2,9,3}
Number of vertices, edges, etc : 2, 108, 162, 36
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
27-fold quotients : {2,3,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 5)( 6,21)( 7,23)( 8,22)( 9,12)(10,14)(11,13)(15,27)(16,29)(17,28)
(19,20)(25,26);;
s2 := ( 3, 6)( 4,24)( 5,15)( 7,21)( 8,12)(10,27)(11,18)(13,26)(14,17)(16,23)
(19,29)(22,25);;
s3 := ( 3,18)( 4,20)( 5,19)( 6,27)( 7,29)( 8,28)(10,11)(13,14)(15,21)(16,23)
(17,22)(25,26);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 6,21)( 7,23)( 8,22)( 9,12)(10,14)(11,13)(15,27)(16,29)
(17,28)(19,20)(25,26);
s2 := Sym(29)!( 3, 6)( 4,24)( 5,15)( 7,21)( 8,12)(10,27)(11,18)(13,26)(14,17)
(16,23)(19,29)(22,25);
s3 := Sym(29)!( 3,18)( 4,20)( 5,19)( 6,27)( 7,29)( 8,28)(10,11)(13,14)(15,21)
(16,23)(17,22)(25,26);
poly := sub<Sym(29)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2 >;

```

to this polytope