Questions?
See the FAQ
or other info.

Polytope of Type {3,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,4}*1296b
if this polytope has a name.
Group : SmallGroup(1296,3528)
Rank : 4
Schlafli Type : {3,6,4}
Number of vertices, edges, etc : 3, 81, 108, 36
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 6
Special Properties :
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,4}*432b
   9-fold quotients : {3,6,4}*144
   18-fold quotients : {3,6,2}*72
   27-fold quotients : {3,2,4}*48
   54-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)
(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)(46,64)
(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);;
s1 := ( 1,32)( 2,31)( 3,33)( 4,29)( 5,28)( 6,30)( 7,35)( 8,34)( 9,36)(10,50)
(11,49)(12,51)(13,47)(14,46)(15,48)(16,53)(17,52)(18,54)(19,41)(20,40)(21,42)
(22,38)(23,37)(24,39)(25,44)(26,43)(27,45)(55,59)(56,58)(57,60)(61,62)(64,77)
(65,76)(66,78)(67,74)(68,73)(69,75)(70,80)(71,79)(72,81);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)
(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)(27,60)
(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69)(76,79)(77,80)(78,81);;
s3 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,46)
(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(64,73)(65,74)(66,75)
(67,76)(68,77)(69,78)(70,79)(71,80)(72,81);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s2*s0*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s0*s1*s2*s3*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)
(15,26)(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)
(35,60)(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)
(46,64)(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);
s1 := Sym(81)!( 1,32)( 2,31)( 3,33)( 4,29)( 5,28)( 6,30)( 7,35)( 8,34)( 9,36)
(10,50)(11,49)(12,51)(13,47)(14,46)(15,48)(16,53)(17,52)(18,54)(19,41)(20,40)
(21,42)(22,38)(23,37)(24,39)(25,44)(26,43)(27,45)(55,59)(56,58)(57,60)(61,62)
(64,77)(65,76)(66,78)(67,74)(68,73)(69,75)(70,80)(71,79)(72,81);
s2 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)
(16,31)(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)
(27,60)(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69)(76,79)(77,80)(78,81);
s3 := Sym(81)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)
(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(64,73)(65,74)
(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s2*s0*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s0*s1*s2*s3*s2*s1 >; 
 
References : None.
to this polytope