Questions?
See the FAQ
or other info.

Polytope of Type {16,7}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,7}*1344b
if this polytope has a name.
Group : SmallGroup(1344,11291)
Rank : 3
Schlafli Type : {16,7}
Number of vertices, edges, etc : 96, 336, 42
Order of s0s1s2 : 8
Order of s0s1s2s1 : 16
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,7}*672b
4-fold quotients : {8,7}*336b
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 9)( 4, 5)( 6,31)( 7,21)( 8,19)(10,29)(11,26)(12,30)(13,14)
(15,28)(16,20)(17,27)(18,24)(22,25)(23,32);;
s1 := ( 2,12)( 3,11)( 4,25)( 5,21)( 6,30)( 7,31)( 8,23)( 9,14)(13,29)(15,27)
(16,28)(17,19)(20,26)(24,32);;
s2 := ( 2,29)( 4, 8)( 5,19)( 6,30)( 7,25)( 9,10)(11,17)(12,31)(13,20)(14,16)
(15,23)(21,22)(26,27)(28,32);;
poly := Group([s0,s1,s2]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(32)!( 1, 3)( 2, 9)( 4, 5)( 6,31)( 7,21)( 8,19)(10,29)(11,26)(12,30)
(13,14)(15,28)(16,20)(17,27)(18,24)(22,25)(23,32);
s1 := Sym(32)!( 2,12)( 3,11)( 4,25)( 5,21)( 6,30)( 7,31)( 8,23)( 9,14)(13,29)
(15,27)(16,28)(17,19)(20,26)(24,32);
s2 := Sym(32)!( 2,29)( 4, 8)( 5,19)( 6,30)( 7,25)( 9,10)(11,17)(12,31)(13,20)
(14,16)(15,23)(21,22)(26,27)(28,32);
poly := sub<Sym(32)|s0,s1,s2>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

References : None.
to this polytope