Questions?
See the FAQ
or other info.

# Polytope of Type {2,3,2,4,14}

Atlas Canonical Name : {2,3,2,4,14}*1344
if this polytope has a name.
Group : SmallGroup(1344,11527)
Rank : 6
Schlafli Type : {2,3,2,4,14}
Number of vertices, edges, etc : 2, 3, 3, 4, 28, 14
Order of s0s1s2s3s4s5 : 84
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,2,2,14}*672
4-fold quotients : {2,3,2,2,7}*336
7-fold quotients : {2,3,2,4,2}*192
14-fold quotients : {2,3,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 7,10)(11,16)(12,17)(18,24)(19,25)(26,30)(27,31);;
s4 := ( 6, 7)( 8,12)( 9,11)(10,15)(13,19)(14,18)(16,23)(17,22)(20,27)(21,26)
(24,29)(25,28)(30,33)(31,32);;
s5 := ( 6, 8)( 7,11)( 9,13)(10,16)(12,18)(14,20)(15,22)(17,24)(19,26)(23,28)
(25,30)(29,32);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4,
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(33)!(1,2);
s1 := Sym(33)!(4,5);
s2 := Sym(33)!(3,4);
s3 := Sym(33)!( 7,10)(11,16)(12,17)(18,24)(19,25)(26,30)(27,31);
s4 := Sym(33)!( 6, 7)( 8,12)( 9,11)(10,15)(13,19)(14,18)(16,23)(17,22)(20,27)
(21,26)(24,29)(25,28)(30,33)(31,32);
s5 := Sym(33)!( 6, 8)( 7,11)( 9,13)(10,16)(12,18)(14,20)(15,22)(17,24)(19,26)
(23,28)(25,30)(29,32);
poly := sub<Sym(33)|s0,s1,s2,s3,s4,s5>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4,
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;

```

to this polytope