Questions?
See the FAQ
or other info.

Polytope of Type {6,2,14,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,14,4}*1344
if this polytope has a name.
Group : SmallGroup(1344,11527)
Rank : 5
Schlafli Type : {6,2,14,4}
Number of vertices, edges, etc : 6, 6, 14, 28, 4
Order of s0s1s2s3s4 : 84
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,14,4}*672, {6,2,14,2}*672
   3-fold quotients : {2,2,14,4}*448
   4-fold quotients : {3,2,14,2}*336, {6,2,7,2}*336
   6-fold quotients : {2,2,14,2}*224
   7-fold quotients : {6,2,2,4}*192
   8-fold quotients : {3,2,7,2}*168
   12-fold quotients : {2,2,7,2}*112
   14-fold quotients : {3,2,2,4}*96, {6,2,2,2}*96
   21-fold quotients : {2,2,2,4}*64
   28-fold quotients : {3,2,2,2}*48
   42-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 9,10)(12,13)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)
(31,32)(33,34);;
s3 := ( 7, 9)( 8,17)(10,14)(11,12)(13,25)(15,21)(16,23)(18,19)(20,31)(24,29)
(26,27)(28,32)(30,33);;
s4 := ( 7, 8)( 9,12)(10,13)(11,16)(14,19)(15,20)(17,23)(18,24)(21,27)(22,28)
(25,29)(26,30)(31,33)(32,34);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(34)!(3,4)(5,6);
s1 := Sym(34)!(1,5)(2,3)(4,6);
s2 := Sym(34)!( 9,10)(12,13)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)
(29,30)(31,32)(33,34);
s3 := Sym(34)!( 7, 9)( 8,17)(10,14)(11,12)(13,25)(15,21)(16,23)(18,19)(20,31)
(24,29)(26,27)(28,32)(30,33);
s4 := Sym(34)!( 7, 8)( 9,12)(10,13)(11,16)(14,19)(15,20)(17,23)(18,24)(21,27)
(22,28)(25,29)(26,30)(31,33)(32,34);
poly := sub<Sym(34)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope