Questions?
See the FAQ
or other info.

Polytope of Type {6,14,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,14,4,2}*1344
if this polytope has a name.
Group : SmallGroup(1344,11527)
Rank : 5
Schlafli Type : {6,14,4,2}
Number of vertices, edges, etc : 6, 42, 28, 4, 2
Order of s0s1s2s3s4 : 84
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,14,2,2}*672
   3-fold quotients : {2,14,4,2}*448
   6-fold quotients : {2,14,2,2}*224
   7-fold quotients : {6,2,4,2}*192
   12-fold quotients : {2,7,2,2}*112
   14-fold quotients : {3,2,4,2}*96, {6,2,2,2}*96
   21-fold quotients : {2,2,4,2}*64
   28-fold quotients : {3,2,2,2}*48
   42-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 8,15)( 9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)
(32,39)(33,40)(34,41)(35,42)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)
(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84);;
s1 := ( 1, 8)( 2,14)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(16,21)(17,20)(18,19)
(22,29)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(37,42)(38,41)(39,40)(43,50)
(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(58,63)(59,62)(60,61)(64,71)(65,77)
(66,76)(67,75)(68,74)(69,73)(70,72)(79,84)(80,83)(81,82);;
s2 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)(22,23)
(24,28)(25,27)(29,30)(31,35)(32,34)(36,37)(38,42)(39,41)(43,65)(44,64)(45,70)
(46,69)(47,68)(48,67)(49,66)(50,72)(51,71)(52,77)(53,76)(54,75)(55,74)(56,73)
(57,79)(58,78)(59,84)(60,83)(61,82)(62,81)(63,80);;
s3 := ( 1,43)( 2,44)( 3,45)( 4,46)( 5,47)( 6,48)( 7,49)( 8,50)( 9,51)(10,52)
(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)
(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)
(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84);;
s4 := (85,86);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(86)!( 8,15)( 9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)
(31,38)(32,39)(33,40)(34,41)(35,42)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)
(56,63)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84);
s1 := Sym(86)!( 1, 8)( 2,14)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(16,21)(17,20)
(18,19)(22,29)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(37,42)(38,41)(39,40)
(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(58,63)(59,62)(60,61)(64,71)
(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(79,84)(80,83)(81,82);
s2 := Sym(86)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)(10,14)(11,13)(15,16)(17,21)(18,20)
(22,23)(24,28)(25,27)(29,30)(31,35)(32,34)(36,37)(38,42)(39,41)(43,65)(44,64)
(45,70)(46,69)(47,68)(48,67)(49,66)(50,72)(51,71)(52,77)(53,76)(54,75)(55,74)
(56,73)(57,79)(58,78)(59,84)(60,83)(61,82)(62,81)(63,80);
s3 := Sym(86)!( 1,43)( 2,44)( 3,45)( 4,46)( 5,47)( 6,48)( 7,49)( 8,50)( 9,51)
(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)
(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)
(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84);
s4 := Sym(86)!(85,86);
poly := sub<Sym(86)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope