Questions?
See the FAQ
or other info.

Polytope of Type {7,2,48}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,48}*1344
if this polytope has a name.
Group : SmallGroup(1344,1483)
Rank : 4
Schlafli Type : {7,2,48}
Number of vertices, edges, etc : 7, 7, 48, 48
Order of s0s1s2s3 : 336
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,2,24}*672
   3-fold quotients : {7,2,16}*448
   4-fold quotients : {7,2,12}*336
   6-fold quotients : {7,2,8}*224
   8-fold quotients : {7,2,6}*168
   12-fold quotients : {7,2,4}*112
   16-fold quotients : {7,2,3}*84
   24-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 9,10)(11,12)(13,16)(14,18)(15,17)(19,22)(20,24)(21,23)(25,28)(26,30)
(27,29)(31,34)(32,36)(33,35)(37,40)(38,42)(39,41)(43,46)(44,48)(45,47)(50,53)
(51,52)(54,55);;
s3 := ( 8,14)( 9,11)(10,20)(12,15)(13,17)(16,26)(18,21)(19,23)(22,32)(24,27)
(25,29)(28,38)(30,33)(31,35)(34,44)(36,39)(37,41)(40,50)(42,45)(43,47)(46,54)
(48,51)(49,52)(53,55);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(55)!(2,3)(4,5)(6,7);
s1 := Sym(55)!(1,2)(3,4)(5,6);
s2 := Sym(55)!( 9,10)(11,12)(13,16)(14,18)(15,17)(19,22)(20,24)(21,23)(25,28)
(26,30)(27,29)(31,34)(32,36)(33,35)(37,40)(38,42)(39,41)(43,46)(44,48)(45,47)
(50,53)(51,52)(54,55);
s3 := Sym(55)!( 8,14)( 9,11)(10,20)(12,15)(13,17)(16,26)(18,21)(19,23)(22,32)
(24,27)(25,29)(28,38)(30,33)(31,35)(34,44)(36,39)(37,41)(40,50)(42,45)(43,47)
(46,54)(48,51)(49,52)(53,55);
poly := sub<Sym(55)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope