Questions?
See the FAQ
or other info.

# Polytope of Type {8,42}

Atlas Canonical Name : {8,42}*1344a
if this polytope has a name.
Group : SmallGroup(1344,6454)
Rank : 3
Schlafli Type : {8,42}
Number of vertices, edges, etc : 16, 336, 84
Order of s0s1s2 : 21
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {4,42}*336c
7-fold quotients : {8,6}*192a
8-fold quotients : {4,21}*168
28-fold quotients : {4,6}*48b
56-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 14)(  6, 13)(  7, 16)(  8, 15)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 30)( 22, 29)( 23, 32)( 24, 31)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 46)( 38, 45)( 39, 48)( 40, 47)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 64)( 56, 63)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 78)( 70, 77)( 71, 80)( 72, 79)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 94)( 86, 93)( 87, 96)( 88, 95)
( 97,105)( 98,106)( 99,107)(100,108)(101,110)(102,109)(103,112)(104,111);;
s1 := (  3,  4)(  5,  6)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 97)( 18, 98)
( 19,100)( 20, 99)( 21,102)( 22,101)( 23,103)( 24,104)( 25,109)( 26,110)
( 27,112)( 28,111)( 29,105)( 30,106)( 31,108)( 32,107)( 33, 81)( 34, 82)
( 35, 84)( 36, 83)( 37, 86)( 38, 85)( 39, 87)( 40, 88)( 41, 93)( 42, 94)
( 43, 96)( 44, 95)( 45, 89)( 46, 90)( 47, 92)( 48, 91)( 49, 65)( 50, 66)
( 51, 68)( 52, 67)( 53, 70)( 54, 69)( 55, 71)( 56, 72)( 57, 77)( 58, 78)
( 59, 80)( 60, 79)( 61, 73)( 62, 74)( 63, 76)( 64, 75);;
s2 := (  1, 25)(  2, 28)(  3, 27)(  4, 26)(  5, 21)(  6, 24)(  7, 23)(  8, 22)
(  9, 17)( 10, 20)( 11, 19)( 12, 18)( 13, 31)( 14, 30)( 15, 29)( 16, 32)
( 33,105)( 34,108)( 35,107)( 36,106)( 37,101)( 38,104)( 39,103)( 40,102)
( 41, 97)( 42,100)( 43, 99)( 44, 98)( 45,111)( 46,110)( 47,109)( 48,112)
( 49, 89)( 50, 92)( 51, 91)( 52, 90)( 53, 85)( 54, 88)( 55, 87)( 56, 86)
( 57, 81)( 58, 84)( 59, 83)( 60, 82)( 61, 95)( 62, 94)( 63, 93)( 64, 96)
( 65, 73)( 66, 76)( 67, 75)( 68, 74)( 70, 72)( 77, 79);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(112)!(  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 14)(  6, 13)(  7, 16)
(  8, 15)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 30)( 22, 29)( 23, 32)
( 24, 31)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 46)( 38, 45)( 39, 48)
( 40, 47)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 55, 64)
( 56, 63)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 78)( 70, 77)( 71, 80)
( 72, 79)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 94)( 86, 93)( 87, 96)
( 88, 95)( 97,105)( 98,106)( 99,107)(100,108)(101,110)(102,109)(103,112)
(104,111);
s1 := Sym(112)!(  3,  4)(  5,  6)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 97)
( 18, 98)( 19,100)( 20, 99)( 21,102)( 22,101)( 23,103)( 24,104)( 25,109)
( 26,110)( 27,112)( 28,111)( 29,105)( 30,106)( 31,108)( 32,107)( 33, 81)
( 34, 82)( 35, 84)( 36, 83)( 37, 86)( 38, 85)( 39, 87)( 40, 88)( 41, 93)
( 42, 94)( 43, 96)( 44, 95)( 45, 89)( 46, 90)( 47, 92)( 48, 91)( 49, 65)
( 50, 66)( 51, 68)( 52, 67)( 53, 70)( 54, 69)( 55, 71)( 56, 72)( 57, 77)
( 58, 78)( 59, 80)( 60, 79)( 61, 73)( 62, 74)( 63, 76)( 64, 75);
s2 := Sym(112)!(  1, 25)(  2, 28)(  3, 27)(  4, 26)(  5, 21)(  6, 24)(  7, 23)
(  8, 22)(  9, 17)( 10, 20)( 11, 19)( 12, 18)( 13, 31)( 14, 30)( 15, 29)
( 16, 32)( 33,105)( 34,108)( 35,107)( 36,106)( 37,101)( 38,104)( 39,103)
( 40,102)( 41, 97)( 42,100)( 43, 99)( 44, 98)( 45,111)( 46,110)( 47,109)
( 48,112)( 49, 89)( 50, 92)( 51, 91)( 52, 90)( 53, 85)( 54, 88)( 55, 87)
( 56, 86)( 57, 81)( 58, 84)( 59, 83)( 60, 82)( 61, 95)( 62, 94)( 63, 93)
( 64, 96)( 65, 73)( 66, 76)( 67, 75)( 68, 74)( 70, 72)( 77, 79);
poly := sub<Sym(112)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope