Questions?
See the FAQ
or other info.

Polytope of Type {2,3,2,56}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,2,56}*1344
if this polytope has a name.
Group : SmallGroup(1344,8483)
Rank : 5
Schlafli Type : {2,3,2,56}
Number of vertices, edges, etc : 2, 3, 3, 56, 56
Order of s0s1s2s3s4 : 168
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,2,28}*672
   4-fold quotients : {2,3,2,14}*336
   7-fold quotients : {2,3,2,8}*192
   8-fold quotients : {2,3,2,7}*168
   14-fold quotients : {2,3,2,4}*96
   28-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 7, 8)( 9,10)(11,14)(12,16)(13,15)(17,18)(19,24)(20,26)(21,25)(22,28)
(23,27)(29,30)(32,39)(33,38)(34,41)(35,40)(36,43)(37,42)(44,45)(46,51)(47,50)
(48,53)(49,52)(54,55)(56,59)(57,58)(60,61);;
s4 := ( 6,12)( 7, 9)( 8,20)(10,22)(11,15)(13,17)(14,32)(16,34)(18,36)(19,25)
(21,27)(23,29)(24,44)(26,46)(28,48)(30,37)(31,38)(33,40)(35,42)(39,54)(41,56)
(43,49)(45,50)(47,52)(51,60)(53,57)(55,58)(59,61);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(61)!(1,2);
s1 := Sym(61)!(4,5);
s2 := Sym(61)!(3,4);
s3 := Sym(61)!( 7, 8)( 9,10)(11,14)(12,16)(13,15)(17,18)(19,24)(20,26)(21,25)
(22,28)(23,27)(29,30)(32,39)(33,38)(34,41)(35,40)(36,43)(37,42)(44,45)(46,51)
(47,50)(48,53)(49,52)(54,55)(56,59)(57,58)(60,61);
s4 := Sym(61)!( 6,12)( 7, 9)( 8,20)(10,22)(11,15)(13,17)(14,32)(16,34)(18,36)
(19,25)(21,27)(23,29)(24,44)(26,46)(28,48)(30,37)(31,38)(33,40)(35,42)(39,54)
(41,56)(43,49)(45,50)(47,52)(51,60)(53,57)(55,58)(59,61);
poly := sub<Sym(61)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope