Questions?
See the FAQ
or other info.

Polytope of Type {2,44,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,44,8}*1408a
if this polytope has a name.
Group : SmallGroup(1408,13687)
Rank : 4
Schlafli Type : {2,44,8}
Number of vertices, edges, etc : 2, 44, 176, 8
Order of s0s1s2s3 : 88
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,44,4}*704, {2,22,8}*704
   4-fold quotients : {2,44,2}*352, {2,22,4}*352
   8-fold quotients : {2,22,2}*176
   11-fold quotients : {2,4,8}*128a
   16-fold quotients : {2,11,2}*88
   22-fold quotients : {2,4,4}*64, {2,2,8}*64
   44-fold quotients : {2,2,4}*32, {2,4,2}*32
   88-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)( 37, 46)
( 38, 45)( 39, 44)( 40, 43)( 41, 42)( 48, 57)( 49, 56)( 50, 55)( 51, 54)
( 52, 53)( 59, 68)( 60, 67)( 61, 66)( 62, 65)( 63, 64)( 70, 79)( 71, 78)
( 72, 77)( 73, 76)( 74, 75)( 81, 90)( 82, 89)( 83, 88)( 84, 87)( 85, 86)
( 91,135)( 92,145)( 93,144)( 94,143)( 95,142)( 96,141)( 97,140)( 98,139)
( 99,138)(100,137)(101,136)(102,146)(103,156)(104,155)(105,154)(106,153)
(107,152)(108,151)(109,150)(110,149)(111,148)(112,147)(113,157)(114,167)
(115,166)(116,165)(117,164)(118,163)(119,162)(120,161)(121,160)(122,159)
(123,158)(124,168)(125,178)(126,177)(127,176)(128,175)(129,174)(130,173)
(131,172)(132,171)(133,170)(134,169);;
s2 := (  3, 92)(  4, 91)(  5,101)(  6,100)(  7, 99)(  8, 98)(  9, 97)( 10, 96)
( 11, 95)( 12, 94)( 13, 93)( 14,103)( 15,102)( 16,112)( 17,111)( 18,110)
( 19,109)( 20,108)( 21,107)( 22,106)( 23,105)( 24,104)( 25,125)( 26,124)
( 27,134)( 28,133)( 29,132)( 30,131)( 31,130)( 32,129)( 33,128)( 34,127)
( 35,126)( 36,114)( 37,113)( 38,123)( 39,122)( 40,121)( 41,120)( 42,119)
( 43,118)( 44,117)( 45,116)( 46,115)( 47,136)( 48,135)( 49,145)( 50,144)
( 51,143)( 52,142)( 53,141)( 54,140)( 55,139)( 56,138)( 57,137)( 58,147)
( 59,146)( 60,156)( 61,155)( 62,154)( 63,153)( 64,152)( 65,151)( 66,150)
( 67,149)( 68,148)( 69,169)( 70,168)( 71,178)( 72,177)( 73,176)( 74,175)
( 75,174)( 76,173)( 77,172)( 78,171)( 79,170)( 80,158)( 81,157)( 82,167)
( 83,166)( 84,165)( 85,164)( 86,163)( 87,162)( 88,161)( 89,160)( 90,159);;
s3 := ( 25, 36)( 26, 37)( 27, 38)( 28, 39)( 29, 40)( 30, 41)( 31, 42)( 32, 43)
( 33, 44)( 34, 45)( 35, 46)( 69, 80)( 70, 81)( 71, 82)( 72, 83)( 73, 84)
( 74, 85)( 75, 86)( 76, 87)( 77, 88)( 78, 89)( 79, 90)( 91,113)( 92,114)
( 93,115)( 94,116)( 95,117)( 96,118)( 97,119)( 98,120)( 99,121)(100,122)
(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)
(109,131)(110,132)(111,133)(112,134)(135,157)(136,158)(137,159)(138,160)
(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)
(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176)
(155,177)(156,178);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(178)!(1,2);
s1 := Sym(178)!(  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)
( 37, 46)( 38, 45)( 39, 44)( 40, 43)( 41, 42)( 48, 57)( 49, 56)( 50, 55)
( 51, 54)( 52, 53)( 59, 68)( 60, 67)( 61, 66)( 62, 65)( 63, 64)( 70, 79)
( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 81, 90)( 82, 89)( 83, 88)( 84, 87)
( 85, 86)( 91,135)( 92,145)( 93,144)( 94,143)( 95,142)( 96,141)( 97,140)
( 98,139)( 99,138)(100,137)(101,136)(102,146)(103,156)(104,155)(105,154)
(106,153)(107,152)(108,151)(109,150)(110,149)(111,148)(112,147)(113,157)
(114,167)(115,166)(116,165)(117,164)(118,163)(119,162)(120,161)(121,160)
(122,159)(123,158)(124,168)(125,178)(126,177)(127,176)(128,175)(129,174)
(130,173)(131,172)(132,171)(133,170)(134,169);
s2 := Sym(178)!(  3, 92)(  4, 91)(  5,101)(  6,100)(  7, 99)(  8, 98)(  9, 97)
( 10, 96)( 11, 95)( 12, 94)( 13, 93)( 14,103)( 15,102)( 16,112)( 17,111)
( 18,110)( 19,109)( 20,108)( 21,107)( 22,106)( 23,105)( 24,104)( 25,125)
( 26,124)( 27,134)( 28,133)( 29,132)( 30,131)( 31,130)( 32,129)( 33,128)
( 34,127)( 35,126)( 36,114)( 37,113)( 38,123)( 39,122)( 40,121)( 41,120)
( 42,119)( 43,118)( 44,117)( 45,116)( 46,115)( 47,136)( 48,135)( 49,145)
( 50,144)( 51,143)( 52,142)( 53,141)( 54,140)( 55,139)( 56,138)( 57,137)
( 58,147)( 59,146)( 60,156)( 61,155)( 62,154)( 63,153)( 64,152)( 65,151)
( 66,150)( 67,149)( 68,148)( 69,169)( 70,168)( 71,178)( 72,177)( 73,176)
( 74,175)( 75,174)( 76,173)( 77,172)( 78,171)( 79,170)( 80,158)( 81,157)
( 82,167)( 83,166)( 84,165)( 85,164)( 86,163)( 87,162)( 88,161)( 89,160)
( 90,159);
s3 := Sym(178)!( 25, 36)( 26, 37)( 27, 38)( 28, 39)( 29, 40)( 30, 41)( 31, 42)
( 32, 43)( 33, 44)( 34, 45)( 35, 46)( 69, 80)( 70, 81)( 71, 82)( 72, 83)
( 73, 84)( 74, 85)( 75, 86)( 76, 87)( 77, 88)( 78, 89)( 79, 90)( 91,113)
( 92,114)( 93,115)( 94,116)( 95,117)( 96,118)( 97,119)( 98,120)( 99,121)
(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)
(108,130)(109,131)(110,132)(111,133)(112,134)(135,157)(136,158)(137,159)
(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)
(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)
(154,176)(155,177)(156,178);
poly := sub<Sym(178)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope