Questions?
See the FAQ
or other info.

Polytope of Type {2,4,4,22}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,4,22}*1408
if this polytope has a name.
Group : SmallGroup(1408,17724)
Rank : 5
Schlafli Type : {2,4,4,22}
Number of vertices, edges, etc : 2, 4, 8, 44, 22
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,4,22}*704, {2,4,2,22}*704
   4-fold quotients : {2,4,2,11}*352, {2,2,2,22}*352
   8-fold quotients : {2,2,2,11}*176
   11-fold quotients : {2,4,4,2}*128
   22-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)
(57,68)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)
(79,90);;
s2 := ( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)(11,55)(12,56)
(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)
(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)
(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)
(46,90);;
s3 := ( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)(15,24)(16,23)(17,22)(18,21)(19,20)
(26,35)(27,34)(28,33)(29,32)(30,31)(37,46)(38,45)(39,44)(40,43)(41,42)(47,69)
(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,80)
(59,90)(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81);;
s4 := ( 3, 4)( 5,13)( 6,12)( 7,11)( 8,10)(14,15)(16,24)(17,23)(18,22)(19,21)
(25,26)(27,35)(28,34)(29,33)(30,32)(36,37)(38,46)(39,45)(40,44)(41,43)(47,48)
(49,57)(50,56)(51,55)(52,54)(58,59)(60,68)(61,67)(62,66)(63,65)(69,70)(71,79)
(72,78)(73,77)(74,76)(80,81)(82,90)(83,89)(84,88)(85,87);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(90)!(1,2);
s1 := Sym(90)!(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)
(56,67)(57,68)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)
(78,89)(79,90);
s2 := Sym(90)!( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)(11,55)
(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)
(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)
(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)
(45,89)(46,90);
s3 := Sym(90)!( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)(15,24)(16,23)(17,22)(18,21)
(19,20)(26,35)(27,34)(28,33)(29,32)(30,31)(37,46)(38,45)(39,44)(40,43)(41,42)
(47,69)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)
(58,80)(59,90)(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81);
s4 := Sym(90)!( 3, 4)( 5,13)( 6,12)( 7,11)( 8,10)(14,15)(16,24)(17,23)(18,22)
(19,21)(25,26)(27,35)(28,34)(29,33)(30,32)(36,37)(38,46)(39,45)(40,44)(41,43)
(47,48)(49,57)(50,56)(51,55)(52,54)(58,59)(60,68)(61,67)(62,66)(63,65)(69,70)
(71,79)(72,78)(73,77)(74,76)(80,81)(82,90)(83,89)(84,88)(85,87);
poly := sub<Sym(90)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope