Questions?
See the FAQ
or other info.

Polytope of Type {2,2,44,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,44,4}*1408
if this polytope has a name.
Group : SmallGroup(1408,17727)
Rank : 5
Schlafli Type : {2,2,44,4}
Number of vertices, edges, etc : 2, 2, 44, 88, 4
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,44,2}*704, {2,2,22,4}*704
   4-fold quotients : {2,2,22,2}*352
   8-fold quotients : {2,2,11,2}*176
   11-fold quotients : {2,2,4,4}*128
   22-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64
   44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,26)(18,25)(19,24)(20,23)(21,22)
(28,37)(29,36)(30,35)(31,34)(32,33)(39,48)(40,47)(41,46)(42,45)(43,44)(49,71)
(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,82)
(61,92)(62,91)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,84)(70,83);;
s3 := ( 5,50)( 6,49)( 7,59)( 8,58)( 9,57)(10,56)(11,55)(12,54)(13,53)(14,52)
(15,51)(16,61)(17,60)(18,70)(19,69)(20,68)(21,67)(22,66)(23,65)(24,64)(25,63)
(26,62)(27,72)(28,71)(29,81)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)
(37,73)(38,83)(39,82)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)
(48,84);;
s4 := (49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)
(59,70)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)
(81,92);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(92)!(1,2);
s1 := Sym(92)!(3,4);
s2 := Sym(92)!( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,26)(18,25)(19,24)(20,23)
(21,22)(28,37)(29,36)(30,35)(31,34)(32,33)(39,48)(40,47)(41,46)(42,45)(43,44)
(49,71)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)
(60,82)(61,92)(62,91)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,84)(70,83);
s3 := Sym(92)!( 5,50)( 6,49)( 7,59)( 8,58)( 9,57)(10,56)(11,55)(12,54)(13,53)
(14,52)(15,51)(16,61)(17,60)(18,70)(19,69)(20,68)(21,67)(22,66)(23,65)(24,64)
(25,63)(26,62)(27,72)(28,71)(29,81)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)
(36,74)(37,73)(38,83)(39,82)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)
(47,85)(48,84);
s4 := Sym(92)!(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)
(58,69)(59,70)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)
(80,91)(81,92);
poly := sub<Sym(92)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope