Questions?
See the FAQ
or other info.

Polytope of Type {4,2,44,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,44,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,17950)
Rank : 5
Schlafli Type : {4,2,44,2}
Number of vertices, edges, etc : 4, 4, 44, 44, 2
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,44,2}*704, {4,2,22,2}*704
   4-fold quotients : {4,2,11,2}*352, {2,2,22,2}*352
   8-fold quotients : {2,2,11,2}*176
   11-fold quotients : {4,2,4,2}*128
   22-fold quotients : {2,2,4,2}*64, {4,2,2,2}*64
   44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 7)( 8, 9)(11,14)(12,13)(15,16)(17,18)(19,22)(20,21)(23,24)(25,26)
(27,30)(28,29)(31,32)(33,34)(35,38)(36,37)(39,40)(41,42)(43,46)(44,45)
(47,48);;
s3 := ( 5,11)( 6, 8)( 7,17)( 9,19)(10,13)(12,15)(14,25)(16,27)(18,21)(20,23)
(22,33)(24,35)(26,29)(28,31)(30,41)(32,43)(34,37)(36,39)(38,47)(40,44)(42,45)
(46,48);;
s4 := (49,50);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!(2,3);
s1 := Sym(50)!(1,2)(3,4);
s2 := Sym(50)!( 6, 7)( 8, 9)(11,14)(12,13)(15,16)(17,18)(19,22)(20,21)(23,24)
(25,26)(27,30)(28,29)(31,32)(33,34)(35,38)(36,37)(39,40)(41,42)(43,46)(44,45)
(47,48);
s3 := Sym(50)!( 5,11)( 6, 8)( 7,17)( 9,19)(10,13)(12,15)(14,25)(16,27)(18,21)
(20,23)(22,33)(24,35)(26,29)(28,31)(30,41)(32,43)(34,37)(36,39)(38,47)(40,44)
(42,45)(46,48);
s4 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope