Questions?
See the FAQ
or other info.

Polytope of Type {2,4,45}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,45}*1440
if this polytope has a name.
Group : SmallGroup(1440,4575)
Rank : 4
Schlafli Type : {2,4,45}
Number of vertices, edges, etc : 2, 8, 180, 90
Order of s0s1s2s3 : 90
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,45}*720
   3-fold quotients : {2,4,15}*480
   4-fold quotients : {2,2,45}*360
   5-fold quotients : {2,4,9}*288
   6-fold quotients : {2,4,15}*240
   10-fold quotients : {2,4,9}*144
   12-fold quotients : {2,2,15}*120
   15-fold quotients : {2,4,3}*96
   20-fold quotients : {2,2,9}*72
   30-fold quotients : {2,4,3}*48
   36-fold quotients : {2,2,5}*40
   60-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,185)(  4,186)(  5,183)(  6,184)(  7,189)(  8,190)(  9,187)( 10,188)
( 11,193)( 12,194)( 13,191)( 14,192)( 15,197)( 16,198)( 17,195)( 18,196)
( 19,201)( 20,202)( 21,199)( 22,200)( 23,205)( 24,206)( 25,203)( 26,204)
( 27,209)( 28,210)( 29,207)( 30,208)( 31,213)( 32,214)( 33,211)( 34,212)
( 35,217)( 36,218)( 37,215)( 38,216)( 39,221)( 40,222)( 41,219)( 42,220)
( 43,225)( 44,226)( 45,223)( 46,224)( 47,229)( 48,230)( 49,227)( 50,228)
( 51,233)( 52,234)( 53,231)( 54,232)( 55,237)( 56,238)( 57,235)( 58,236)
( 59,241)( 60,242)( 61,239)( 62,240)( 63,245)( 64,246)( 65,243)( 66,244)
( 67,249)( 68,250)( 69,247)( 70,248)( 71,253)( 72,254)( 73,251)( 74,252)
( 75,257)( 76,258)( 77,255)( 78,256)( 79,261)( 80,262)( 81,259)( 82,260)
( 83,265)( 84,266)( 85,263)( 86,264)( 87,269)( 88,270)( 89,267)( 90,268)
( 91,273)( 92,274)( 93,271)( 94,272)( 95,277)( 96,278)( 97,275)( 98,276)
( 99,281)(100,282)(101,279)(102,280)(103,285)(104,286)(105,283)(106,284)
(107,289)(108,290)(109,287)(110,288)(111,293)(112,294)(113,291)(114,292)
(115,297)(116,298)(117,295)(118,296)(119,301)(120,302)(121,299)(122,300)
(123,305)(124,306)(125,303)(126,304)(127,309)(128,310)(129,307)(130,308)
(131,313)(132,314)(133,311)(134,312)(135,317)(136,318)(137,315)(138,316)
(139,321)(140,322)(141,319)(142,320)(143,325)(144,326)(145,323)(146,324)
(147,329)(148,330)(149,327)(150,328)(151,333)(152,334)(153,331)(154,332)
(155,337)(156,338)(157,335)(158,336)(159,341)(160,342)(161,339)(162,340)
(163,345)(164,346)(165,343)(166,344)(167,349)(168,350)(169,347)(170,348)
(171,353)(172,354)(173,351)(174,352)(175,357)(176,358)(177,355)(178,356)
(179,361)(180,362)(181,359)(182,360);;
s2 := (  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 51)( 16, 53)( 17, 52)
( 18, 54)( 19, 59)( 20, 61)( 21, 60)( 22, 62)( 23, 55)( 24, 57)( 25, 56)
( 26, 58)( 27, 39)( 28, 41)( 29, 40)( 30, 42)( 31, 47)( 32, 49)( 33, 48)
( 34, 50)( 35, 43)( 36, 45)( 37, 44)( 38, 46)( 63,127)( 64,129)( 65,128)
( 66,130)( 67,123)( 68,125)( 69,124)( 70,126)( 71,131)( 72,133)( 73,132)
( 74,134)( 75,175)( 76,177)( 77,176)( 78,178)( 79,171)( 80,173)( 81,172)
( 82,174)( 83,179)( 84,181)( 85,180)( 86,182)( 87,163)( 88,165)( 89,164)
( 90,166)( 91,159)( 92,161)( 93,160)( 94,162)( 95,167)( 96,169)( 97,168)
( 98,170)( 99,151)(100,153)(101,152)(102,154)(103,147)(104,149)(105,148)
(106,150)(107,155)(108,157)(109,156)(110,158)(111,139)(112,141)(113,140)
(114,142)(115,135)(116,137)(117,136)(118,138)(119,143)(120,145)(121,144)
(122,146)(184,185)(187,191)(188,193)(189,192)(190,194)(195,231)(196,233)
(197,232)(198,234)(199,239)(200,241)(201,240)(202,242)(203,235)(204,237)
(205,236)(206,238)(207,219)(208,221)(209,220)(210,222)(211,227)(212,229)
(213,228)(214,230)(215,223)(216,225)(217,224)(218,226)(243,307)(244,309)
(245,308)(246,310)(247,303)(248,305)(249,304)(250,306)(251,311)(252,313)
(253,312)(254,314)(255,355)(256,357)(257,356)(258,358)(259,351)(260,353)
(261,352)(262,354)(263,359)(264,361)(265,360)(266,362)(267,343)(268,345)
(269,344)(270,346)(271,339)(272,341)(273,340)(274,342)(275,347)(276,349)
(277,348)(278,350)(279,331)(280,333)(281,332)(282,334)(283,327)(284,329)
(285,328)(286,330)(287,335)(288,337)(289,336)(290,338)(291,319)(292,321)
(293,320)(294,322)(295,315)(296,317)(297,316)(298,318)(299,323)(300,325)
(301,324)(302,326);;
s3 := (  3,135)(  4,138)(  5,137)(  6,136)(  7,143)(  8,146)(  9,145)( 10,144)
( 11,139)( 12,142)( 13,141)( 14,140)( 15,123)( 16,126)( 17,125)( 18,124)
( 19,131)( 20,134)( 21,133)( 22,132)( 23,127)( 24,130)( 25,129)( 26,128)
( 27,171)( 28,174)( 29,173)( 30,172)( 31,179)( 32,182)( 33,181)( 34,180)
( 35,175)( 36,178)( 37,177)( 38,176)( 39,159)( 40,162)( 41,161)( 42,160)
( 43,167)( 44,170)( 45,169)( 46,168)( 47,163)( 48,166)( 49,165)( 50,164)
( 51,147)( 52,150)( 53,149)( 54,148)( 55,155)( 56,158)( 57,157)( 58,156)
( 59,151)( 60,154)( 61,153)( 62,152)( 63, 75)( 64, 78)( 65, 77)( 66, 76)
( 67, 83)( 68, 86)( 69, 85)( 70, 84)( 71, 79)( 72, 82)( 73, 81)( 74, 80)
( 87,111)( 88,114)( 89,113)( 90,112)( 91,119)( 92,122)( 93,121)( 94,120)
( 95,115)( 96,118)( 97,117)( 98,116)(100,102)(103,107)(104,110)(105,109)
(106,108)(183,315)(184,318)(185,317)(186,316)(187,323)(188,326)(189,325)
(190,324)(191,319)(192,322)(193,321)(194,320)(195,303)(196,306)(197,305)
(198,304)(199,311)(200,314)(201,313)(202,312)(203,307)(204,310)(205,309)
(206,308)(207,351)(208,354)(209,353)(210,352)(211,359)(212,362)(213,361)
(214,360)(215,355)(216,358)(217,357)(218,356)(219,339)(220,342)(221,341)
(222,340)(223,347)(224,350)(225,349)(226,348)(227,343)(228,346)(229,345)
(230,344)(231,327)(232,330)(233,329)(234,328)(235,335)(236,338)(237,337)
(238,336)(239,331)(240,334)(241,333)(242,332)(243,255)(244,258)(245,257)
(246,256)(247,263)(248,266)(249,265)(250,264)(251,259)(252,262)(253,261)
(254,260)(267,291)(268,294)(269,293)(270,292)(271,299)(272,302)(273,301)
(274,300)(275,295)(276,298)(277,297)(278,296)(280,282)(283,287)(284,290)
(285,289)(286,288);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(362)!(1,2);
s1 := Sym(362)!(  3,185)(  4,186)(  5,183)(  6,184)(  7,189)(  8,190)(  9,187)
( 10,188)( 11,193)( 12,194)( 13,191)( 14,192)( 15,197)( 16,198)( 17,195)
( 18,196)( 19,201)( 20,202)( 21,199)( 22,200)( 23,205)( 24,206)( 25,203)
( 26,204)( 27,209)( 28,210)( 29,207)( 30,208)( 31,213)( 32,214)( 33,211)
( 34,212)( 35,217)( 36,218)( 37,215)( 38,216)( 39,221)( 40,222)( 41,219)
( 42,220)( 43,225)( 44,226)( 45,223)( 46,224)( 47,229)( 48,230)( 49,227)
( 50,228)( 51,233)( 52,234)( 53,231)( 54,232)( 55,237)( 56,238)( 57,235)
( 58,236)( 59,241)( 60,242)( 61,239)( 62,240)( 63,245)( 64,246)( 65,243)
( 66,244)( 67,249)( 68,250)( 69,247)( 70,248)( 71,253)( 72,254)( 73,251)
( 74,252)( 75,257)( 76,258)( 77,255)( 78,256)( 79,261)( 80,262)( 81,259)
( 82,260)( 83,265)( 84,266)( 85,263)( 86,264)( 87,269)( 88,270)( 89,267)
( 90,268)( 91,273)( 92,274)( 93,271)( 94,272)( 95,277)( 96,278)( 97,275)
( 98,276)( 99,281)(100,282)(101,279)(102,280)(103,285)(104,286)(105,283)
(106,284)(107,289)(108,290)(109,287)(110,288)(111,293)(112,294)(113,291)
(114,292)(115,297)(116,298)(117,295)(118,296)(119,301)(120,302)(121,299)
(122,300)(123,305)(124,306)(125,303)(126,304)(127,309)(128,310)(129,307)
(130,308)(131,313)(132,314)(133,311)(134,312)(135,317)(136,318)(137,315)
(138,316)(139,321)(140,322)(141,319)(142,320)(143,325)(144,326)(145,323)
(146,324)(147,329)(148,330)(149,327)(150,328)(151,333)(152,334)(153,331)
(154,332)(155,337)(156,338)(157,335)(158,336)(159,341)(160,342)(161,339)
(162,340)(163,345)(164,346)(165,343)(166,344)(167,349)(168,350)(169,347)
(170,348)(171,353)(172,354)(173,351)(174,352)(175,357)(176,358)(177,355)
(178,356)(179,361)(180,362)(181,359)(182,360);
s2 := Sym(362)!(  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 51)( 16, 53)
( 17, 52)( 18, 54)( 19, 59)( 20, 61)( 21, 60)( 22, 62)( 23, 55)( 24, 57)
( 25, 56)( 26, 58)( 27, 39)( 28, 41)( 29, 40)( 30, 42)( 31, 47)( 32, 49)
( 33, 48)( 34, 50)( 35, 43)( 36, 45)( 37, 44)( 38, 46)( 63,127)( 64,129)
( 65,128)( 66,130)( 67,123)( 68,125)( 69,124)( 70,126)( 71,131)( 72,133)
( 73,132)( 74,134)( 75,175)( 76,177)( 77,176)( 78,178)( 79,171)( 80,173)
( 81,172)( 82,174)( 83,179)( 84,181)( 85,180)( 86,182)( 87,163)( 88,165)
( 89,164)( 90,166)( 91,159)( 92,161)( 93,160)( 94,162)( 95,167)( 96,169)
( 97,168)( 98,170)( 99,151)(100,153)(101,152)(102,154)(103,147)(104,149)
(105,148)(106,150)(107,155)(108,157)(109,156)(110,158)(111,139)(112,141)
(113,140)(114,142)(115,135)(116,137)(117,136)(118,138)(119,143)(120,145)
(121,144)(122,146)(184,185)(187,191)(188,193)(189,192)(190,194)(195,231)
(196,233)(197,232)(198,234)(199,239)(200,241)(201,240)(202,242)(203,235)
(204,237)(205,236)(206,238)(207,219)(208,221)(209,220)(210,222)(211,227)
(212,229)(213,228)(214,230)(215,223)(216,225)(217,224)(218,226)(243,307)
(244,309)(245,308)(246,310)(247,303)(248,305)(249,304)(250,306)(251,311)
(252,313)(253,312)(254,314)(255,355)(256,357)(257,356)(258,358)(259,351)
(260,353)(261,352)(262,354)(263,359)(264,361)(265,360)(266,362)(267,343)
(268,345)(269,344)(270,346)(271,339)(272,341)(273,340)(274,342)(275,347)
(276,349)(277,348)(278,350)(279,331)(280,333)(281,332)(282,334)(283,327)
(284,329)(285,328)(286,330)(287,335)(288,337)(289,336)(290,338)(291,319)
(292,321)(293,320)(294,322)(295,315)(296,317)(297,316)(298,318)(299,323)
(300,325)(301,324)(302,326);
s3 := Sym(362)!(  3,135)(  4,138)(  5,137)(  6,136)(  7,143)(  8,146)(  9,145)
( 10,144)( 11,139)( 12,142)( 13,141)( 14,140)( 15,123)( 16,126)( 17,125)
( 18,124)( 19,131)( 20,134)( 21,133)( 22,132)( 23,127)( 24,130)( 25,129)
( 26,128)( 27,171)( 28,174)( 29,173)( 30,172)( 31,179)( 32,182)( 33,181)
( 34,180)( 35,175)( 36,178)( 37,177)( 38,176)( 39,159)( 40,162)( 41,161)
( 42,160)( 43,167)( 44,170)( 45,169)( 46,168)( 47,163)( 48,166)( 49,165)
( 50,164)( 51,147)( 52,150)( 53,149)( 54,148)( 55,155)( 56,158)( 57,157)
( 58,156)( 59,151)( 60,154)( 61,153)( 62,152)( 63, 75)( 64, 78)( 65, 77)
( 66, 76)( 67, 83)( 68, 86)( 69, 85)( 70, 84)( 71, 79)( 72, 82)( 73, 81)
( 74, 80)( 87,111)( 88,114)( 89,113)( 90,112)( 91,119)( 92,122)( 93,121)
( 94,120)( 95,115)( 96,118)( 97,117)( 98,116)(100,102)(103,107)(104,110)
(105,109)(106,108)(183,315)(184,318)(185,317)(186,316)(187,323)(188,326)
(189,325)(190,324)(191,319)(192,322)(193,321)(194,320)(195,303)(196,306)
(197,305)(198,304)(199,311)(200,314)(201,313)(202,312)(203,307)(204,310)
(205,309)(206,308)(207,351)(208,354)(209,353)(210,352)(211,359)(212,362)
(213,361)(214,360)(215,355)(216,358)(217,357)(218,356)(219,339)(220,342)
(221,341)(222,340)(223,347)(224,350)(225,349)(226,348)(227,343)(228,346)
(229,345)(230,344)(231,327)(232,330)(233,329)(234,328)(235,335)(236,338)
(237,337)(238,336)(239,331)(240,334)(241,333)(242,332)(243,255)(244,258)
(245,257)(246,256)(247,263)(248,266)(249,265)(250,264)(251,259)(252,262)
(253,261)(254,260)(267,291)(268,294)(269,293)(270,292)(271,299)(272,302)
(273,301)(274,300)(275,295)(276,298)(277,297)(278,296)(280,282)(283,287)
(284,290)(285,289)(286,288);
poly := sub<Sym(362)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope