Questions?
See the FAQ
or other info.

Polytope of Type {4,60}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,60}*1440
if this polytope has a name.
Group : SmallGroup(1440,4764)
Rank : 3
Schlafli Type : {4,60}
Number of vertices, edges, etc : 12, 360, 180
Order of s0s1s2 : 20
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,30}*720
   5-fold quotients : {4,12}*288
   9-fold quotients : {4,20}*160
   10-fold quotients : {4,6}*144
   18-fold quotients : {2,20}*80, {4,10}*80
   20-fold quotients : {4,6}*72
   36-fold quotients : {2,10}*40
   45-fold quotients : {4,4}*32
   72-fold quotients : {2,5}*20
   90-fold quotients : {2,4}*16, {4,2}*16
   180-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 36)(  7, 37)(  8, 38)(  9, 39)( 10, 40)( 11, 26)( 12, 27)( 13, 28)
( 14, 29)( 15, 30)( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 51, 81)
( 52, 82)( 53, 83)( 54, 84)( 55, 85)( 56, 71)( 57, 72)( 58, 73)( 59, 74)
( 60, 75)( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 96,126)( 97,127)
( 98,128)( 99,129)(100,130)(101,116)(102,117)(103,118)(104,119)(105,120)
(106,121)(107,122)(108,123)(109,124)(110,125)(141,171)(142,172)(143,173)
(144,174)(145,175)(146,161)(147,162)(148,163)(149,164)(150,165)(151,166)
(152,167)(153,168)(154,169)(155,170)(181,271)(182,272)(183,273)(184,274)
(185,275)(186,306)(187,307)(188,308)(189,309)(190,310)(191,296)(192,297)
(193,298)(194,299)(195,300)(196,301)(197,302)(198,303)(199,304)(200,305)
(201,291)(202,292)(203,293)(204,294)(205,295)(206,281)(207,282)(208,283)
(209,284)(210,285)(211,286)(212,287)(213,288)(214,289)(215,290)(216,276)
(217,277)(218,278)(219,279)(220,280)(221,311)(222,312)(223,313)(224,314)
(225,315)(226,316)(227,317)(228,318)(229,319)(230,320)(231,351)(232,352)
(233,353)(234,354)(235,355)(236,341)(237,342)(238,343)(239,344)(240,345)
(241,346)(242,347)(243,348)(244,349)(245,350)(246,336)(247,337)(248,338)
(249,339)(250,340)(251,326)(252,327)(253,328)(254,329)(255,330)(256,331)
(257,332)(258,333)(259,334)(260,335)(261,321)(262,322)(263,323)(264,324)
(265,325)(266,356)(267,357)(268,358)(269,359)(270,360);;
s1 := (  1,181)(  2,185)(  3,184)(  4,183)(  5,182)(  6,186)(  7,190)(  8,189)
(  9,188)( 10,187)( 11,191)( 12,195)( 13,194)( 14,193)( 15,192)( 16,221)
( 17,225)( 18,224)( 19,223)( 20,222)( 21,211)( 22,215)( 23,214)( 24,213)
( 25,212)( 26,216)( 27,220)( 28,219)( 29,218)( 30,217)( 31,201)( 32,205)
( 33,204)( 34,203)( 35,202)( 36,206)( 37,210)( 38,209)( 39,208)( 40,207)
( 41,196)( 42,200)( 43,199)( 44,198)( 45,197)( 46,226)( 47,230)( 48,229)
( 49,228)( 50,227)( 51,231)( 52,235)( 53,234)( 54,233)( 55,232)( 56,236)
( 57,240)( 58,239)( 59,238)( 60,237)( 61,266)( 62,270)( 63,269)( 64,268)
( 65,267)( 66,256)( 67,260)( 68,259)( 69,258)( 70,257)( 71,261)( 72,265)
( 73,264)( 74,263)( 75,262)( 76,246)( 77,250)( 78,249)( 79,248)( 80,247)
( 81,251)( 82,255)( 83,254)( 84,253)( 85,252)( 86,241)( 87,245)( 88,244)
( 89,243)( 90,242)( 91,271)( 92,275)( 93,274)( 94,273)( 95,272)( 96,276)
( 97,280)( 98,279)( 99,278)(100,277)(101,281)(102,285)(103,284)(104,283)
(105,282)(106,311)(107,315)(108,314)(109,313)(110,312)(111,301)(112,305)
(113,304)(114,303)(115,302)(116,306)(117,310)(118,309)(119,308)(120,307)
(121,291)(122,295)(123,294)(124,293)(125,292)(126,296)(127,300)(128,299)
(129,298)(130,297)(131,286)(132,290)(133,289)(134,288)(135,287)(136,316)
(137,320)(138,319)(139,318)(140,317)(141,321)(142,325)(143,324)(144,323)
(145,322)(146,326)(147,330)(148,329)(149,328)(150,327)(151,356)(152,360)
(153,359)(154,358)(155,357)(156,346)(157,350)(158,349)(159,348)(160,347)
(161,351)(162,355)(163,354)(164,353)(165,352)(166,336)(167,340)(168,339)
(169,338)(170,337)(171,341)(172,345)(173,344)(174,343)(175,342)(176,331)
(177,335)(178,334)(179,333)(180,332);;
s2 := (  1,112)(  2,111)(  3,115)(  4,114)(  5,113)(  6,107)(  7,106)(  8,110)
(  9,109)( 10,108)( 11,117)( 12,116)( 13,120)( 14,119)( 15,118)( 16, 97)
( 17, 96)( 18,100)( 19, 99)( 20, 98)( 21, 92)( 22, 91)( 23, 95)( 24, 94)
( 25, 93)( 26,102)( 27,101)( 28,105)( 29,104)( 30,103)( 31,127)( 32,126)
( 33,130)( 34,129)( 35,128)( 36,122)( 37,121)( 38,125)( 39,124)( 40,123)
( 41,132)( 42,131)( 43,135)( 44,134)( 45,133)( 46,157)( 47,156)( 48,160)
( 49,159)( 50,158)( 51,152)( 52,151)( 53,155)( 54,154)( 55,153)( 56,162)
( 57,161)( 58,165)( 59,164)( 60,163)( 61,142)( 62,141)( 63,145)( 64,144)
( 65,143)( 66,137)( 67,136)( 68,140)( 69,139)( 70,138)( 71,147)( 72,146)
( 73,150)( 74,149)( 75,148)( 76,172)( 77,171)( 78,175)( 79,174)( 80,173)
( 81,167)( 82,166)( 83,170)( 84,169)( 85,168)( 86,177)( 87,176)( 88,180)
( 89,179)( 90,178)(181,337)(182,336)(183,340)(184,339)(185,338)(186,332)
(187,331)(188,335)(189,334)(190,333)(191,342)(192,341)(193,345)(194,344)
(195,343)(196,322)(197,321)(198,325)(199,324)(200,323)(201,317)(202,316)
(203,320)(204,319)(205,318)(206,327)(207,326)(208,330)(209,329)(210,328)
(211,352)(212,351)(213,355)(214,354)(215,353)(216,347)(217,346)(218,350)
(219,349)(220,348)(221,357)(222,356)(223,360)(224,359)(225,358)(226,292)
(227,291)(228,295)(229,294)(230,293)(231,287)(232,286)(233,290)(234,289)
(235,288)(236,297)(237,296)(238,300)(239,299)(240,298)(241,277)(242,276)
(243,280)(244,279)(245,278)(246,272)(247,271)(248,275)(249,274)(250,273)
(251,282)(252,281)(253,285)(254,284)(255,283)(256,307)(257,306)(258,310)
(259,309)(260,308)(261,302)(262,301)(263,305)(264,304)(265,303)(266,312)
(267,311)(268,315)(269,314)(270,313);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(360)!(  6, 36)(  7, 37)(  8, 38)(  9, 39)( 10, 40)( 11, 26)( 12, 27)
( 13, 28)( 14, 29)( 15, 30)( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)
( 51, 81)( 52, 82)( 53, 83)( 54, 84)( 55, 85)( 56, 71)( 57, 72)( 58, 73)
( 59, 74)( 60, 75)( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 96,126)
( 97,127)( 98,128)( 99,129)(100,130)(101,116)(102,117)(103,118)(104,119)
(105,120)(106,121)(107,122)(108,123)(109,124)(110,125)(141,171)(142,172)
(143,173)(144,174)(145,175)(146,161)(147,162)(148,163)(149,164)(150,165)
(151,166)(152,167)(153,168)(154,169)(155,170)(181,271)(182,272)(183,273)
(184,274)(185,275)(186,306)(187,307)(188,308)(189,309)(190,310)(191,296)
(192,297)(193,298)(194,299)(195,300)(196,301)(197,302)(198,303)(199,304)
(200,305)(201,291)(202,292)(203,293)(204,294)(205,295)(206,281)(207,282)
(208,283)(209,284)(210,285)(211,286)(212,287)(213,288)(214,289)(215,290)
(216,276)(217,277)(218,278)(219,279)(220,280)(221,311)(222,312)(223,313)
(224,314)(225,315)(226,316)(227,317)(228,318)(229,319)(230,320)(231,351)
(232,352)(233,353)(234,354)(235,355)(236,341)(237,342)(238,343)(239,344)
(240,345)(241,346)(242,347)(243,348)(244,349)(245,350)(246,336)(247,337)
(248,338)(249,339)(250,340)(251,326)(252,327)(253,328)(254,329)(255,330)
(256,331)(257,332)(258,333)(259,334)(260,335)(261,321)(262,322)(263,323)
(264,324)(265,325)(266,356)(267,357)(268,358)(269,359)(270,360);
s1 := Sym(360)!(  1,181)(  2,185)(  3,184)(  4,183)(  5,182)(  6,186)(  7,190)
(  8,189)(  9,188)( 10,187)( 11,191)( 12,195)( 13,194)( 14,193)( 15,192)
( 16,221)( 17,225)( 18,224)( 19,223)( 20,222)( 21,211)( 22,215)( 23,214)
( 24,213)( 25,212)( 26,216)( 27,220)( 28,219)( 29,218)( 30,217)( 31,201)
( 32,205)( 33,204)( 34,203)( 35,202)( 36,206)( 37,210)( 38,209)( 39,208)
( 40,207)( 41,196)( 42,200)( 43,199)( 44,198)( 45,197)( 46,226)( 47,230)
( 48,229)( 49,228)( 50,227)( 51,231)( 52,235)( 53,234)( 54,233)( 55,232)
( 56,236)( 57,240)( 58,239)( 59,238)( 60,237)( 61,266)( 62,270)( 63,269)
( 64,268)( 65,267)( 66,256)( 67,260)( 68,259)( 69,258)( 70,257)( 71,261)
( 72,265)( 73,264)( 74,263)( 75,262)( 76,246)( 77,250)( 78,249)( 79,248)
( 80,247)( 81,251)( 82,255)( 83,254)( 84,253)( 85,252)( 86,241)( 87,245)
( 88,244)( 89,243)( 90,242)( 91,271)( 92,275)( 93,274)( 94,273)( 95,272)
( 96,276)( 97,280)( 98,279)( 99,278)(100,277)(101,281)(102,285)(103,284)
(104,283)(105,282)(106,311)(107,315)(108,314)(109,313)(110,312)(111,301)
(112,305)(113,304)(114,303)(115,302)(116,306)(117,310)(118,309)(119,308)
(120,307)(121,291)(122,295)(123,294)(124,293)(125,292)(126,296)(127,300)
(128,299)(129,298)(130,297)(131,286)(132,290)(133,289)(134,288)(135,287)
(136,316)(137,320)(138,319)(139,318)(140,317)(141,321)(142,325)(143,324)
(144,323)(145,322)(146,326)(147,330)(148,329)(149,328)(150,327)(151,356)
(152,360)(153,359)(154,358)(155,357)(156,346)(157,350)(158,349)(159,348)
(160,347)(161,351)(162,355)(163,354)(164,353)(165,352)(166,336)(167,340)
(168,339)(169,338)(170,337)(171,341)(172,345)(173,344)(174,343)(175,342)
(176,331)(177,335)(178,334)(179,333)(180,332);
s2 := Sym(360)!(  1,112)(  2,111)(  3,115)(  4,114)(  5,113)(  6,107)(  7,106)
(  8,110)(  9,109)( 10,108)( 11,117)( 12,116)( 13,120)( 14,119)( 15,118)
( 16, 97)( 17, 96)( 18,100)( 19, 99)( 20, 98)( 21, 92)( 22, 91)( 23, 95)
( 24, 94)( 25, 93)( 26,102)( 27,101)( 28,105)( 29,104)( 30,103)( 31,127)
( 32,126)( 33,130)( 34,129)( 35,128)( 36,122)( 37,121)( 38,125)( 39,124)
( 40,123)( 41,132)( 42,131)( 43,135)( 44,134)( 45,133)( 46,157)( 47,156)
( 48,160)( 49,159)( 50,158)( 51,152)( 52,151)( 53,155)( 54,154)( 55,153)
( 56,162)( 57,161)( 58,165)( 59,164)( 60,163)( 61,142)( 62,141)( 63,145)
( 64,144)( 65,143)( 66,137)( 67,136)( 68,140)( 69,139)( 70,138)( 71,147)
( 72,146)( 73,150)( 74,149)( 75,148)( 76,172)( 77,171)( 78,175)( 79,174)
( 80,173)( 81,167)( 82,166)( 83,170)( 84,169)( 85,168)( 86,177)( 87,176)
( 88,180)( 89,179)( 90,178)(181,337)(182,336)(183,340)(184,339)(185,338)
(186,332)(187,331)(188,335)(189,334)(190,333)(191,342)(192,341)(193,345)
(194,344)(195,343)(196,322)(197,321)(198,325)(199,324)(200,323)(201,317)
(202,316)(203,320)(204,319)(205,318)(206,327)(207,326)(208,330)(209,329)
(210,328)(211,352)(212,351)(213,355)(214,354)(215,353)(216,347)(217,346)
(218,350)(219,349)(220,348)(221,357)(222,356)(223,360)(224,359)(225,358)
(226,292)(227,291)(228,295)(229,294)(230,293)(231,287)(232,286)(233,290)
(234,289)(235,288)(236,297)(237,296)(238,300)(239,299)(240,298)(241,277)
(242,276)(243,280)(244,279)(245,278)(246,272)(247,271)(248,275)(249,274)
(250,273)(251,282)(252,281)(253,285)(254,284)(255,283)(256,307)(257,306)
(258,310)(259,309)(260,308)(261,302)(262,301)(263,305)(264,304)(265,303)
(266,312)(267,311)(268,315)(269,314)(270,313);
poly := sub<Sym(360)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1 >; 
 
References : None.
to this polytope