Questions?
See the FAQ
or other info.

Polytope of Type {5,2,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,6,12}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5358)
Rank : 5
Schlafli Type : {5,2,6,12}
Number of vertices, edges, etc : 5, 5, 6, 36, 12
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,6,6}*720c
   3-fold quotients : {5,2,6,4}*480a
   4-fold quotients : {5,2,3,6}*360
   6-fold quotients : {5,2,6,2}*240
   9-fold quotients : {5,2,2,4}*160
   12-fold quotients : {5,2,3,2}*120
   18-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 6,42)( 7,44)( 8,43)( 9,48)(10,50)(11,49)(12,45)(13,47)(14,46)(15,51)
(16,53)(17,52)(18,57)(19,59)(20,58)(21,54)(22,56)(23,55)(24,60)(25,62)(26,61)
(27,66)(28,68)(29,67)(30,63)(31,65)(32,64)(33,69)(34,71)(35,70)(36,75)(37,77)
(38,76)(39,72)(40,74)(41,73);;
s3 := ( 6,64)( 7,63)( 8,65)( 9,61)(10,60)(11,62)(12,67)(13,66)(14,68)(15,73)
(16,72)(17,74)(18,70)(19,69)(20,71)(21,76)(22,75)(23,77)(24,46)(25,45)(26,47)
(27,43)(28,42)(29,44)(30,49)(31,48)(32,50)(33,55)(34,54)(35,56)(36,52)(37,51)
(38,53)(39,58)(40,57)(41,59);;
s4 := ( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,33)(25,35)(26,34)(27,36)
(28,38)(29,37)(30,39)(31,41)(32,40)(43,44)(46,47)(49,50)(52,53)(55,56)(58,59)
(60,69)(61,71)(62,70)(63,72)(64,74)(65,73)(66,75)(67,77)(68,76);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(77)!(2,3)(4,5);
s1 := Sym(77)!(1,2)(3,4);
s2 := Sym(77)!( 6,42)( 7,44)( 8,43)( 9,48)(10,50)(11,49)(12,45)(13,47)(14,46)
(15,51)(16,53)(17,52)(18,57)(19,59)(20,58)(21,54)(22,56)(23,55)(24,60)(25,62)
(26,61)(27,66)(28,68)(29,67)(30,63)(31,65)(32,64)(33,69)(34,71)(35,70)(36,75)
(37,77)(38,76)(39,72)(40,74)(41,73);
s3 := Sym(77)!( 6,64)( 7,63)( 8,65)( 9,61)(10,60)(11,62)(12,67)(13,66)(14,68)
(15,73)(16,72)(17,74)(18,70)(19,69)(20,71)(21,76)(22,75)(23,77)(24,46)(25,45)
(26,47)(27,43)(28,42)(29,44)(30,49)(31,48)(32,50)(33,55)(34,54)(35,56)(36,52)
(37,51)(38,53)(39,58)(40,57)(41,59);
s4 := Sym(77)!( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,33)(25,35)(26,34)
(27,36)(28,38)(29,37)(30,39)(31,41)(32,40)(43,44)(46,47)(49,50)(52,53)(55,56)
(58,59)(60,69)(61,71)(62,70)(63,72)(64,74)(65,73)(66,75)(67,77)(68,76);
poly := sub<Sym(77)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope