Questions?
See the FAQ
or other info.

Polytope of Type {6,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5849)
Rank : 4
Schlafli Type : {6,6,3}
Number of vertices, edges, etc : 30, 120, 60, 5
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 6
Special Properties :
   Universal
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,3}*720b
   3-fold quotients : {6,6,3}*480
   6-fold quotients : {3,6,3}*240, {6,3,3}*240
   12-fold quotients : {3,3,3}*120
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 5)( 4, 6)( 9,11);;
s1 := ( 2, 6)( 4, 5)(10,11);;
s2 := ( 8,10);;
s3 := (7,8);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!( 1, 2)( 3, 5)( 4, 6)( 9,11);
s1 := Sym(11)!( 2, 6)( 4, 5)(10,11);
s2 := Sym(11)!( 8,10);
s3 := Sym(11)!(7,8);
poly := sub<Sym(11)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope