Questions?
See the FAQ
or other info.

# Polytope of Type {4,6}

Atlas Canonical Name : {4,6}*1440b
if this polytope has a name.
Group : SmallGroup(1440,5849)
Rank : 3
Schlafli Type : {4,6}
Number of vertices, edges, etc : 120, 360, 180
Order of s0s1s2 : 30
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Halving Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6}*720
3-fold quotients : {4,6}*480
6-fold quotients : {4,6}*240a, {4,6}*240b, {4,6}*240c
12-fold quotients : {4,6}*120
60-fold quotients : {2,6}*24
120-fold quotients : {2,3}*12
180-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := ( 9,11);;
s1 := ( 2, 6)( 4, 5)( 8, 9)(10,11);;
s2 := (1,2)(3,5)(4,6)(7,8);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!( 9,11);
s1 := Sym(11)!( 2, 6)( 4, 5)( 8, 9)(10,11);
s2 := Sym(11)!(1,2)(3,5)(4,6)(7,8);
poly := sub<Sym(11)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1 >;

```
References : None.
to this polytope