Questions?
See the FAQ
or other info.

Polytope of Type {6,60}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,60}*1440c
if this polytope has a name.
Group : SmallGroup(1440,5871)
Rank : 3
Schlafli Type : {6,60}
Number of vertices, edges, etc : 12, 360, 120
Order of s0s1s2 : 30
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,20}*480c
   4-fold quotients : {6,30}*360a
   5-fold quotients : {6,12}*288b
   6-fold quotients : {6,20}*240b
   10-fold quotients : {3,12}*144
   12-fold quotients : {6,10}*120
   15-fold quotients : {6,4}*96
   20-fold quotients : {6,6}*72c
   30-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
   36-fold quotients : {2,10}*40
   40-fold quotients : {3,6}*36
   60-fold quotients : {3,4}*24, {6,2}*24
   72-fold quotients : {2,5}*20
   120-fold quotients : {3,2}*12
   180-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(21,41)(22,42)(23,44)(24,43)(25,45)
(26,46)(27,48)(28,47)(29,49)(30,50)(31,52)(32,51)(33,53)(34,54)(35,56)(36,55)
(37,57)(38,58)(39,60)(40,59);;
s1 := ( 1,21)( 2,24)( 3,23)( 4,22)( 5,37)( 6,40)( 7,39)( 8,38)( 9,33)(10,36)
(11,35)(12,34)(13,29)(14,32)(15,31)(16,30)(17,25)(18,28)(19,27)(20,26)(42,44)
(45,57)(46,60)(47,59)(48,58)(49,53)(50,56)(51,55)(52,54);;
s2 := ( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,18)(10,17)(11,20)(12,19)(13,14)(15,16)
(21,46)(22,45)(23,48)(24,47)(25,42)(26,41)(27,44)(28,43)(29,58)(30,57)(31,60)
(32,59)(33,54)(34,53)(35,56)(36,55)(37,50)(38,49)(39,52)(40,51);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(60)!( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(21,41)(22,42)(23,44)(24,43)
(25,45)(26,46)(27,48)(28,47)(29,49)(30,50)(31,52)(32,51)(33,53)(34,54)(35,56)
(36,55)(37,57)(38,58)(39,60)(40,59);
s1 := Sym(60)!( 1,21)( 2,24)( 3,23)( 4,22)( 5,37)( 6,40)( 7,39)( 8,38)( 9,33)
(10,36)(11,35)(12,34)(13,29)(14,32)(15,31)(16,30)(17,25)(18,28)(19,27)(20,26)
(42,44)(45,57)(46,60)(47,59)(48,58)(49,53)(50,56)(51,55)(52,54);
s2 := Sym(60)!( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,18)(10,17)(11,20)(12,19)(13,14)
(15,16)(21,46)(22,45)(23,48)(24,47)(25,42)(26,41)(27,44)(28,43)(29,58)(30,57)
(31,60)(32,59)(33,54)(34,53)(35,56)(36,55)(37,50)(38,49)(39,52)(40,51);
poly := sub<Sym(60)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope