Questions?
See the FAQ
or other info.

Polytope of Type {6,10,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,10,6,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 5
Schlafli Type : {6,10,6,2}
Number of vertices, edges, etc : 6, 30, 30, 6, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,10,6,2}*480, {6,10,2,2}*480
   5-fold quotients : {6,2,6,2}*288
   9-fold quotients : {2,10,2,2}*160
   10-fold quotients : {3,2,6,2}*144, {6,2,3,2}*144
   15-fold quotients : {2,2,6,2}*96, {6,2,2,2}*96
   18-fold quotients : {2,5,2,2}*80
   20-fold quotients : {3,2,3,2}*72
   30-fold quotients : {2,2,3,2}*48, {3,2,2,2}*48
   45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)
(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)
(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90);;
s1 := ( 1, 6)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,15)(13,14)(16,21)(17,25)(18,24)
(19,23)(20,22)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)(43,44)
(46,51)(47,55)(48,54)(49,53)(50,52)(57,60)(58,59)(61,66)(62,70)(63,69)(64,68)
(65,67)(72,75)(73,74)(76,81)(77,85)(78,84)(79,83)(80,82)(87,90)(88,89);;
s2 := ( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,32)(17,31)(18,35)(19,34)
(20,33)(21,37)(22,36)(23,40)(24,39)(25,38)(26,42)(27,41)(28,45)(29,44)(30,43)
(46,47)(48,50)(51,52)(53,55)(56,57)(58,60)(61,77)(62,76)(63,80)(64,79)(65,78)
(66,82)(67,81)(68,85)(69,84)(70,83)(71,87)(72,86)(73,90)(74,89)(75,88);;
s3 := ( 1,61)( 2,62)( 3,63)( 4,64)( 5,65)( 6,66)( 7,67)( 8,68)( 9,69)(10,70)
(11,71)(12,72)(13,73)(14,74)(15,75)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)
(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,76)(32,77)
(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)
(44,89)(45,90);;
s4 := (91,92);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(92)!( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(21,26)(22,27)(23,28)(24,29)
(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)
(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90);
s1 := Sym(92)!( 1, 6)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,15)(13,14)(16,21)(17,25)
(18,24)(19,23)(20,22)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)
(43,44)(46,51)(47,55)(48,54)(49,53)(50,52)(57,60)(58,59)(61,66)(62,70)(63,69)
(64,68)(65,67)(72,75)(73,74)(76,81)(77,85)(78,84)(79,83)(80,82)(87,90)(88,89);
s2 := Sym(92)!( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,32)(17,31)(18,35)
(19,34)(20,33)(21,37)(22,36)(23,40)(24,39)(25,38)(26,42)(27,41)(28,45)(29,44)
(30,43)(46,47)(48,50)(51,52)(53,55)(56,57)(58,60)(61,77)(62,76)(63,80)(64,79)
(65,78)(66,82)(67,81)(68,85)(69,84)(70,83)(71,87)(72,86)(73,90)(74,89)(75,88);
s3 := Sym(92)!( 1,61)( 2,62)( 3,63)( 4,64)( 5,65)( 6,66)( 7,67)( 8,68)( 9,69)
(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,46)(17,47)(18,48)(19,49)(20,50)
(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,76)
(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)
(43,88)(44,89)(45,90);
s4 := Sym(92)!(91,92);
poly := sub<Sym(92)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope