Questions?
See the FAQ
or other info.

Polytope of Type {2,3,6,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,10,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5924)
Rank : 6
Schlafli Type : {2,3,6,10,2}
Number of vertices, edges, etc : 2, 3, 9, 30, 10, 2
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,3,2,10,2}*480
   5-fold quotients : {2,3,6,2,2}*288
   6-fold quotients : {2,3,2,5,2}*240
   15-fold quotients : {2,3,2,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 8,13)( 9,14)(10,15)(11,16)(12,17)(18,33)(19,34)(20,35)(21,36)(22,37)
(23,43)(24,44)(25,45)(26,46)(27,47)(28,38)(29,39)(30,40)(31,41)(32,42);;
s2 := ( 3,23)( 4,24)( 5,25)( 6,26)( 7,27)( 8,18)( 9,19)(10,20)(11,21)(12,22)
(13,28)(14,29)(15,30)(16,31)(17,32)(33,38)(34,39)(35,40)(36,41)(37,42);;
s3 := ( 4, 7)( 5, 6)( 8,13)( 9,17)(10,16)(11,15)(12,14)(19,22)(20,21)(23,28)
(24,32)(25,31)(26,30)(27,29)(34,37)(35,36)(38,43)(39,47)(40,46)(41,45)
(42,44);;
s4 := ( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)(25,27)
(28,29)(30,32)(33,34)(35,37)(38,39)(40,42)(43,44)(45,47);;
s5 := (48,49);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(49)!(1,2);
s1 := Sym(49)!( 8,13)( 9,14)(10,15)(11,16)(12,17)(18,33)(19,34)(20,35)(21,36)
(22,37)(23,43)(24,44)(25,45)(26,46)(27,47)(28,38)(29,39)(30,40)(31,41)(32,42);
s2 := Sym(49)!( 3,23)( 4,24)( 5,25)( 6,26)( 7,27)( 8,18)( 9,19)(10,20)(11,21)
(12,22)(13,28)(14,29)(15,30)(16,31)(17,32)(33,38)(34,39)(35,40)(36,41)(37,42);
s3 := Sym(49)!( 4, 7)( 5, 6)( 8,13)( 9,17)(10,16)(11,15)(12,14)(19,22)(20,21)
(23,28)(24,32)(25,31)(26,30)(27,29)(34,37)(35,36)(38,43)(39,47)(40,46)(41,45)
(42,44);
s4 := Sym(49)!( 3, 4)( 5, 7)( 8, 9)(10,12)(13,14)(15,17)(18,19)(20,22)(23,24)
(25,27)(28,29)(30,32)(33,34)(35,37)(38,39)(40,42)(43,44)(45,47);
s5 := Sym(49)!(48,49);
poly := sub<Sym(49)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope