Questions?
See the FAQ
or other info.

Polytope of Type {6,2,30,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,30,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5949)
Rank : 5
Schlafli Type : {6,2,30,2}
Number of vertices, edges, etc : 6, 6, 30, 30, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,30,2}*720, {6,2,15,2}*720
   3-fold quotients : {6,2,10,2}*480, {2,2,30,2}*480
   4-fold quotients : {3,2,15,2}*360
   5-fold quotients : {6,2,6,2}*288
   6-fold quotients : {3,2,10,2}*240, {6,2,5,2}*240, {2,2,15,2}*240
   9-fold quotients : {2,2,10,2}*160
   10-fold quotients : {3,2,6,2}*144, {6,2,3,2}*144
   12-fold quotients : {3,2,5,2}*120
   15-fold quotients : {2,2,6,2}*96, {6,2,2,2}*96
   18-fold quotients : {2,2,5,2}*80
   20-fold quotients : {3,2,3,2}*72
   30-fold quotients : {2,2,3,2}*48, {3,2,2,2}*48
   45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,22)(23,26)(24,25)(27,28)
(29,32)(30,31)(33,36)(34,35);;
s3 := ( 7,23)( 8,17)( 9,15)(10,25)(11,13)(12,33)(14,19)(16,29)(18,27)(20,35)
(21,24)(22,34)(26,31)(28,30)(32,36);;
s4 := (37,38);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!(3,4)(5,6);
s1 := Sym(38)!(1,5)(2,3)(4,6);
s2 := Sym(38)!( 9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,22)(23,26)(24,25)
(27,28)(29,32)(30,31)(33,36)(34,35);
s3 := Sym(38)!( 7,23)( 8,17)( 9,15)(10,25)(11,13)(12,33)(14,19)(16,29)(18,27)
(20,35)(21,24)(22,34)(26,31)(28,30)(32,36);
s4 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope