Questions?
See the FAQ
or other info.

Polytope of Type {15,6,2,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,6,2,2,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,5949)
Rank : 6
Schlafli Type : {15,6,2,2,2}
Number of vertices, edges, etc : 15, 45, 6, 2, 2, 2
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {15,2,2,2,2}*480
   5-fold quotients : {3,6,2,2,2}*288
   9-fold quotients : {5,2,2,2,2}*160
   15-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(16,31)(17,35)(18,34)
(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)
(30,37);;
s1 := ( 1,22)( 2,21)( 3,25)( 4,24)( 5,23)( 6,17)( 7,16)( 8,20)( 9,19)(10,18)
(11,27)(12,26)(13,30)(14,29)(15,28)(31,37)(32,36)(33,40)(34,39)(35,38)(41,42)
(43,45);;
s2 := (16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)
(26,41)(27,42)(28,43)(29,44)(30,45);;
s3 := (46,47);;
s4 := (48,49);;
s5 := (50,51);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(51)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(16,31)(17,35)
(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)
(29,38)(30,37);
s1 := Sym(51)!( 1,22)( 2,21)( 3,25)( 4,24)( 5,23)( 6,17)( 7,16)( 8,20)( 9,19)
(10,18)(11,27)(12,26)(13,30)(14,29)(15,28)(31,37)(32,36)(33,40)(34,39)(35,38)
(41,42)(43,45);
s2 := Sym(51)!(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)
(25,40)(26,41)(27,42)(28,43)(29,44)(30,45);
s3 := Sym(51)!(46,47);
s4 := Sym(51)!(48,49);
s5 := Sym(51)!(50,51);
poly := sub<Sym(51)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope