Questions?
See the FAQ
or other info.

Polytope of Type {2,2,46,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,46,4}*1472
if this polytope has a name.
Group : SmallGroup(1472,1369)
Rank : 5
Schlafli Type : {2,2,46,4}
Number of vertices, edges, etc : 2, 2, 46, 92, 4
Order of s0s1s2s3s4 : 92
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,46,2}*736
   4-fold quotients : {2,2,23,2}*368
   23-fold quotients : {2,2,2,4}*64
   46-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6,27)( 7,26)( 8,25)( 9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)
(16,17)(29,50)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)
(39,40)(52,73)(53,72)(54,71)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)
(62,63)(75,96)(76,95)(77,94)(78,93)(79,92)(80,91)(81,90)(82,89)(83,88)(84,87)
(85,86);;
s3 := ( 5, 6)( 7,27)( 8,26)( 9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)
(16,18)(28,29)(30,50)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)
(39,41)(51,75)(52,74)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)
(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,78)
(72,77)(73,76);;
s4 := ( 5,51)( 6,52)( 7,53)( 8,54)( 9,55)(10,56)(11,57)(12,58)(13,59)(14,60)
(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)
(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,81)(36,82)
(37,83)(38,84)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)
(48,94)(49,95)(50,96);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!(1,2);
s1 := Sym(96)!(3,4);
s2 := Sym(96)!( 6,27)( 7,26)( 8,25)( 9,24)(10,23)(11,22)(12,21)(13,20)(14,19)
(15,18)(16,17)(29,50)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(37,42)
(38,41)(39,40)(52,73)(53,72)(54,71)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)
(61,64)(62,63)(75,96)(76,95)(77,94)(78,93)(79,92)(80,91)(81,90)(82,89)(83,88)
(84,87)(85,86);
s3 := Sym(96)!( 5, 6)( 7,27)( 8,26)( 9,25)(10,24)(11,23)(12,22)(13,21)(14,20)
(15,19)(16,18)(28,29)(30,50)(31,49)(32,48)(33,47)(34,46)(35,45)(36,44)(37,43)
(38,42)(39,41)(51,75)(52,74)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)
(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)
(71,78)(72,77)(73,76);
s4 := Sym(96)!( 5,51)( 6,52)( 7,53)( 8,54)( 9,55)(10,56)(11,57)(12,58)(13,59)
(14,60)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)
(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,81)
(36,82)(37,83)(38,84)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)
(47,93)(48,94)(49,95)(50,96);
poly := sub<Sym(96)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope