Questions?
See the FAQ
or other info.

Polytope of Type {30,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,10}*1500b
if this polytope has a name.
Group : SmallGroup(1500,37)
Rank : 3
Schlafli Type : {30,10}
Number of vertices, edges, etc : 75, 375, 25
Order of s0s1s2 : 15
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {6,10}*300
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 35)(  7, 34)(  8, 33)(  9, 32)( 10, 31)( 11, 61)
( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 94)( 17, 93)( 18, 92)( 19, 91)
( 20, 95)( 21,124)( 22,123)( 23,122)( 24,121)( 25,125)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 37, 40)( 38, 39)( 41, 69)( 42, 68)( 43, 67)
( 44, 66)( 45, 70)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50,100)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,110)( 57,109)( 58,108)( 59,107)
( 60,106)( 71, 74)( 72, 73)( 81, 85)( 82, 84)( 86,111)( 87,115)( 88,114)
( 89,113)( 90,112)(116,119)(117,118);;
s1 := (  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 42)( 27, 41)( 28, 45)( 29, 44)
( 30, 43)( 31, 37)( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 46, 47)( 48, 50)
( 51, 58)( 52, 57)( 53, 56)( 54, 60)( 55, 59)( 61, 73)( 62, 72)( 63, 71)
( 64, 75)( 65, 74)( 66, 68)( 69, 70)( 76,100)( 77, 99)( 78, 98)( 79, 97)
( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)( 87, 89)
(101,113)(102,112)(103,111)(104,115)(105,114)(106,108)(109,110)(116,123)
(117,122)(118,121)(119,125)(120,124);;
s2 := (  1, 83)(  2, 84)(  3, 85)(  4, 81)(  5, 82)(  6, 79)(  7, 80)(  8, 76)
(  9, 77)( 10, 78)( 11,100)( 12, 96)( 13, 97)( 14, 98)( 15, 99)( 16, 91)
( 17, 92)( 18, 93)( 19, 94)( 20, 95)( 21, 87)( 22, 88)( 23, 89)( 24, 90)
( 25, 86)( 26, 58)( 27, 59)( 28, 60)( 29, 56)( 30, 57)( 31, 54)( 32, 55)
( 33, 51)( 34, 52)( 35, 53)( 36, 75)( 37, 71)( 38, 72)( 39, 73)( 40, 74)
( 41, 66)( 42, 67)( 43, 68)( 44, 69)( 45, 70)( 46, 62)( 47, 63)( 48, 64)
( 49, 65)( 50, 61)(101,108)(102,109)(103,110)(104,106)(105,107)(111,125)
(112,121)(113,122)(114,123)(115,124);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(125)!(  2,  5)(  3,  4)(  6, 35)(  7, 34)(  8, 33)(  9, 32)( 10, 31)
( 11, 61)( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 94)( 17, 93)( 18, 92)
( 19, 91)( 20, 95)( 21,124)( 22,123)( 23,122)( 24,121)( 25,125)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 37, 40)( 38, 39)( 41, 69)( 42, 68)
( 43, 67)( 44, 66)( 45, 70)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50,100)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,110)( 57,109)( 58,108)
( 59,107)( 60,106)( 71, 74)( 72, 73)( 81, 85)( 82, 84)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112)(116,119)(117,118);
s1 := Sym(125)!(  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 42)( 27, 41)( 28, 45)
( 29, 44)( 30, 43)( 31, 37)( 32, 36)( 33, 40)( 34, 39)( 35, 38)( 46, 47)
( 48, 50)( 51, 58)( 52, 57)( 53, 56)( 54, 60)( 55, 59)( 61, 73)( 62, 72)
( 63, 71)( 64, 75)( 65, 74)( 66, 68)( 69, 70)( 76,100)( 77, 99)( 78, 98)
( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)
( 87, 89)(101,113)(102,112)(103,111)(104,115)(105,114)(106,108)(109,110)
(116,123)(117,122)(118,121)(119,125)(120,124);
s2 := Sym(125)!(  1, 83)(  2, 84)(  3, 85)(  4, 81)(  5, 82)(  6, 79)(  7, 80)
(  8, 76)(  9, 77)( 10, 78)( 11,100)( 12, 96)( 13, 97)( 14, 98)( 15, 99)
( 16, 91)( 17, 92)( 18, 93)( 19, 94)( 20, 95)( 21, 87)( 22, 88)( 23, 89)
( 24, 90)( 25, 86)( 26, 58)( 27, 59)( 28, 60)( 29, 56)( 30, 57)( 31, 54)
( 32, 55)( 33, 51)( 34, 52)( 35, 53)( 36, 75)( 37, 71)( 38, 72)( 39, 73)
( 40, 74)( 41, 66)( 42, 67)( 43, 68)( 44, 69)( 45, 70)( 46, 62)( 47, 63)
( 48, 64)( 49, 65)( 50, 61)(101,108)(102,109)(103,110)(104,106)(105,107)
(111,125)(112,121)(113,122)(114,123)(115,124);
poly := sub<Sym(125)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2 >; 
 
References : None.
to this polytope