Questions?
See the FAQ
or other info.

Polytope of Type {21,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {21,6,2}*1512
if this polytope has a name.
Group : SmallGroup(1512,561)
Rank : 4
Schlafli Type : {21,6,2}
Number of vertices, edges, etc : 63, 189, 18, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {21,6,2}*504
   7-fold quotients : {3,6,2}*216
   9-fold quotients : {21,2,2}*168
   21-fold quotients : {3,6,2}*72
   27-fold quotients : {7,2,2}*56
   63-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4,19)( 5,20)( 6,21)( 7,16)( 8,17)( 9,18)(10,13)(11,14)(12,15)(22,43)
(23,44)(24,45)(25,61)(26,62)(27,63)(28,58)(29,59)(30,60)(31,55)(32,56)(33,57)
(34,52)(35,53)(36,54)(37,49)(38,50)(39,51)(40,46)(41,47)(42,48);;
s1 := ( 1,26)( 2,27)( 3,25)( 4,23)( 5,24)( 6,22)( 7,41)( 8,42)( 9,40)(10,38)
(11,39)(12,37)(13,35)(14,36)(15,34)(16,32)(17,33)(18,31)(19,29)(20,30)(21,28)
(43,46)(44,47)(45,48)(49,61)(50,62)(51,63)(52,58)(53,59)(54,60);;
s2 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63);;
s3 := (64,65);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(65)!( 4,19)( 5,20)( 6,21)( 7,16)( 8,17)( 9,18)(10,13)(11,14)(12,15)
(22,43)(23,44)(24,45)(25,61)(26,62)(27,63)(28,58)(29,59)(30,60)(31,55)(32,56)
(33,57)(34,52)(35,53)(36,54)(37,49)(38,50)(39,51)(40,46)(41,47)(42,48);
s1 := Sym(65)!( 1,26)( 2,27)( 3,25)( 4,23)( 5,24)( 6,22)( 7,41)( 8,42)( 9,40)
(10,38)(11,39)(12,37)(13,35)(14,36)(15,34)(16,32)(17,33)(18,31)(19,29)(20,30)
(21,28)(43,46)(44,47)(45,48)(49,61)(50,62)(51,63)(52,58)(53,59)(54,60);
s2 := Sym(65)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63);
s3 := Sym(65)!(64,65);
poly := sub<Sym(65)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope